• Title/Summary/Keyword: spatio-temporal data visualization

Search Result 20, Processing Time 0.026 seconds

VR 및 AR 환경에서의 시공간 데이터 시각화를 위한 동향 분석 (Spatio-temporal Data Visualization Survey for VR and AR Environment)

  • 송현주
    • 방송공학회논문지
    • /
    • 제23권1호
    • /
    • pp.36-44
    • /
    • 2018
  • 가상 현실(Virtual Reality) 및 증강 현실(Augmented Reality) 기기가 보급되면서 새로운 환경에서의 콘텐츠 제공 기술 연구에 대한 필요성이 증대되고 있다. 특히 해당 환경에서 제공할 수 있는 다양한 컨텐츠 중에서도 사물 인터넷(Internet of Things) 기기의 대중화로 인하여 다수의 일반 사용자들이 생산하고 활용하는 시공간 데이터가 증가하고 있다. 본 연구에서는 시공간 데이터에 대한 VR 및 AR 환경에서의 시각화를 위하여 먼저 데이터의 특성을 분석하였고, 일반 모니터를 사용하여 진행되었던 기존 연구에서의 시각화 기법들을 특성에 따라 분류하였다. 이를 통해 최신 기기의 사양 및 상호 작용 설계에 있어서의 특성을 반영하여, 기존 시각화 기법들의 차용 가능성을 살펴보았다. 본 연구의 결과를 통해 VR 및 AR 기기의 특성에 맞춰 시공간 데이터 시각화를 설계할 수 있을 것으로 기대된다.

고객군의 지리적 패턴 발견을 위한 데이터마트 구현과 시각적 분석에 관한 연구 (Buying Pattern Discovery Using Spatio-Temporal Data Mart and Visual Analysis)

  • 조재희;하병국
    • 한국IT서비스학회지
    • /
    • 제9권1호
    • /
    • pp.127-139
    • /
    • 2010
  • Due to the development of information technology and business related to geographical location of customer, the need for the storage and analysis of geographical location data is increasing rapidly. Geographical location data have a spatio-temporal nature which is different from typical business data. Therefore, different methods of data storage and analysis are required. This paper proposes a multi-dimensional data model and data visualization to analyze geographical location data efficiently and effectively. Purchase order data of an online farm products brokerage business was used to build prototype datamart. RFM scores are calculated to classify customers and geocoding technology is applied to display information on maps, thereby to enhance data visualization.

시공간 데이터를 위한 클러스터링 기법 성능 비교 (Performance Comparison of Clustering Techniques for Spatio-Temporal Data)

  • 강나영;강주영;용환승
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.15-37
    • /
    • 2004
  • 최근 데이터 양이 급증하면서 데이터 마이닝에 대한 연구가 활발하게 진행되고 있으며 특히 GPS 시스템, 감시시스템, 기상 관측 시스템과 같은 다양한 응용 시스템으로부터 수집된 데이터를 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 시공간 데이터 마이닝 연구들에서는 비시공간 데이터 기반의 일반적인 클러스터링 기법들을 그대로 적용하고 있으나 데이터의 속성이 다른 시공간 데이터 마이닝에서 기존의 알고리즘들이 어느 정도의 성능을 보장하는지, 데이터의 시공간 속성에 따라 적절한 마이닝 알고리즘을 선택하기 위한 기준이 무엇인지 등에 대한 연구는 미흡한 실정이다. 본 논문에서는 기존의 시공간 데이터 마이닝 연구에서 일반적으로 많이 사용되어 온 알고리즘인 SOM(Self-Organizing Map)을 기반으로 시공간 데이터 마이닝 모듈을 개발하고, 개발된 클러스터링 모듈의 성능을 K-means과 두 가지 응집 계층(Hierarchical Agglomerative) 알고리즘들과 균질도, 분리도, 반면영상 너비, 정확도의 네 가지 평가 기준을 기반으로 비교하였다. 또한 입력 데이터의 특성 가시화 및 클러스터링 결과의 정확한 분석을 위해 시공간 데이터 클러스터링을 위한 가시화 모듈을 개발하였다.

  • PDF

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

서울 대도시권 지하철 통행흐름의 요일 간 변이성 분석: 동적 시각화방법을 토대로 (Time-Space Variability Analysis for the Weekly Passenger Flow of the Seoul Subway System: Based on Dynamic Visualization Methods)

  • 이금숙;김호성;박종수
    • 한국경제지리학회지
    • /
    • 제20권2호
    • /
    • pp.158-172
    • /
    • 2017
  • 본 연구는 동적 시각화 방법을 토대로 서울 대도시권 지하철 통행흐름의 요일 간 변동성을 분석한다. 이를 위하여 본 연구에서는 수도권의 1주일치 교통카드 자료에서 요일별로 1분 간격으로 지하철 승객흐름을 추출한다. 지하철망상의 통행흐름의 시공간적 분포를 나타낼 수 있도록 동적 시각화 방법을 고안하여 지하철 승객의 시공간적 분포에 나타나는 요일 간 변동성을 직관적으로 분석한다. 그 결과로 주중과 주말 지하철 승객흐름의 시공간적 분포 패턴은 확연한 차이를 보인다. 주중과 주말에도 요일에 따라 다소 다른 양상을 보인다. 서울의 주요 중심업무지역들과 유흥지역들의 승객흐름에도 요일별 승객흐름 양상에 뚜렷한 차이가 있음을 확인할 수 있다. 이러한 분석결과는 도시계획과 교통계획의 토대가 될 뿐 만 아니라 도시 재해 재난이 발생할 경우 피해에 노출되는 인구규모를 파악하고 신속한 대피대책마련에 유용한 정보를 제공할 수 있다.

중력모델을 적용한 미세먼지 흐름 패턴 시공간 시각화 (Spatio-temporal Visualization of PM10 Flow Pattern Using Gravity Model)

  • 이건우;염재홍
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.417-426
    • /
    • 2019
  • 이 연구에서는 미세먼지 시공간 변화 표현의 단점을 개선하고자 미세먼지를 흐름으로 시각화하였다. 일반적으로 미세먼지 흐름 시각화는 농도 분포와 바람장을 중첩해 표현하지만 도시 단위 이하 국지적 이동의 경우 바람과 미세먼지 이동이 다를 수 있으므로 바람장을 사용하는 것이 적합하지 않을 수 있다. 제시하는 시각화 방법론은 미세먼지 자료에서 직접 흐름 정보를 추출한다는 점에서 기존 연구와 차별성을 갖는다. 공간 상호작용을 설명하는 중력모델을 확장한 흐름 추출 방법을 미세먼지 자료에 적용하여 미세먼지 분포 변화에서 흐름 정보를 추출하였다. 이를 위해 공간보간법을 이용하여 미세먼지 분포도를 작성하였으며 추출된 미세먼지 흐름 정보를 물방울 모양의 움직이는 입자를 이용해 동적으로 시각화하였다. 산업 및 교통 활동이 시작하는 오전 5~7시 시간대를 대상으로 서울시 미세먼지 평균 흐름을 시각화하였으며 미세먼지 요인 중 하나인 교통정보와 연계하여 시각적으로 관련성을 분석하였다.

원격탐사 영상의 3D 시각화와 데이터베이스의 활용 (Utilization of Database in 3D Visualization of Remotely Sensed Data)

  • 정명희;윤의중
    • 전자공학회논문지CI
    • /
    • 제45권3호
    • /
    • pp.40-46
    • /
    • 2008
  • 원격탐사 영상과 고도자료를 사용하여 지구환경을 3차원으로 시각화할 수 있는데, 이것은 지구과학분야에서 정보를 3차원 공간에서 탐색하고 분석하는 새로운 패러다임을 제공해준다. 지구환경을 보다 현실감 있게 시각화하고 이를 통해 공간적 특징이나 객체 지형들 간의 관계를 분석할 수 있도록 하려면 3D 공간 표현의 지원이 필요하다. 이를 위해서는 다양한 2D, 3D 공간자료와 관련 벡터 자료가 통합되어야 하고, 또한 지질이나 지표 객체들 간의 상대적 위치와 위상학적 관계가 통합되어 함께 다루어져야 한다. 이러한 이유로 지구과학 및 지구환경 문제의 3차원 시각화에서는 3차원 모델링과 위상 분석, 데이터베이스가 함께 고려되어야 한다. 본 논문에서는 지구과학 및 지구환경 분야에서 3차원적 특성을 포함한 동적모형 개발과 시뮬레이션 환경 기반을 제공하도록 원격탐사 자료를 이용하여 시각화하는 방법과 자료추출 및 관리, 3차원 가상공간에서 동적 모형화를 활용하는 방법론에 관하여 연구되었다.

Multi-scale and Interactive Visual Analysis of Public Bicycle System

  • Shi, Xiaoying;Wang, Yang;Lv, Fanshun;Yang, Xiaohang;Fang, Qiming;Zhang, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3037-3054
    • /
    • 2019
  • Public bicycle system (PBS) is a new emerging and popular mode of public transportation. PBS data can be adopted to analyze human movement patterns. Previous work usually focused on specific scales, and the relationships between different levels of hierarchies are ignored. In this paper, we introduce a multi-scale and interactive visual analytics system to investigate human cycling movement and PBS usage condition. The system supports level-of-detail explorative analysis of spatio-temporal characteristics in PBS. Visual views are designed from global, regional and microcosmic scales. For the regional scale, a bicycle network is constructed to model PBS data, and an flow-based community detection algorithm is applied on the bicycle network to determine station clusters. In contrast to the previous used Louvain algorithm, our method avoids producing super-communities and generates better results. We provide two cases to demonstrate how our system can help analysts explore the overall cycling condition in the city and spatio-temporal aggregation of stations.

Design of User Interface for Query and Visualization about Moving Objects in Mobile Device

  • Lee, Jai-Ho;Nam, Kwang-Woo;Kim, Min-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.832-837
    • /
    • 2002
  • As diverse researches are working about location acquisition, storing method, data modeling and query processing of moving objects, the moving object database systems, which can gain, store and manage location information and query processing, are tuning up. As the mobile device is moving but have constraints, the convenience user interface for spatio-temporal query and viewing query result needs. In this paper, we designed user Interface for spatio-temporal query related moving objects, viewing query result, tracing current and past location of those and monitoring. And we designed system for implementation of these interfaces.

  • PDF

Seasonal-Trend Decomposition과 시계열 상관관계 분석을 통한 비정상 이벤트 탐지 시각적 분석 시스템 (Visual Analytics for Abnormal Event detection using Seasonal-Trend Decomposition and Serial-Correlation)

  • 연한별;장윤
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1066-1074
    • /
    • 2014
  • 본 논문에서는 시공간 정보를 포함하는 트윗 스트림에서 비정상적인 이벤트에 대한 상관관계를 사용자에게 시각적으로 분석하는 방법을 다양한 실험을 통하여 제안한다. 제안하는 방법으로는 트윗에서 토픽 모델링을 수행한 다음 계절요인과 추세요인을 반영한 시계열 분석 기법을 이용하여 비정상적인 이벤트 후보군을 추출한다. 추출된 토픽이 포함되어 있는 데이터를 대상으로 다시 한 번 토픽을 추출하여 시계열 분석을 수행한 다음 앞서 추출한 토픽과의 상관관계를 분석하여 비정상적인 이벤트를 탐지할 수 있도록 하였다. 비정상 이벤트를 탐지하는 모든 과정에 시각적 분석 방법을 이용하여 단순한 수치 정보가 아닌 시각적 패턴 형태로 나타냄으로써 사용자는 직관적으로 비정상 이벤트의 동향과 주기적인 패턴을 분석할 수 있도록 하였다. 실험은 2014년 1월 1일부터 2014년 6월 30일까지 국내에서 발생한 트윗을 대상으로 2개의 사건[경주 마우나 리조트 붕괴 사건(2014.02.17.), 진도 여객선 침몰 사건(2014.04.16.)]에 대해 시각적 분석 시스템을 적용하여 사용자는 쉽게 데이터를 분석하고 이해할 수 있음을 보였다.