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Abstract – Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based 
power map, which could be a useful tool for the visualization and tendency assessment of urban energy 
application. Constructing one point-forecasting model for each electricity cell in the geographic space 
is possible; however, it is unadvisable and insufficient, considering the aggregation features of 
electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a 
data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their 
aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least 
squares support vector regression networks), and interval forecasting of spatio-temporal load with 
sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-
level clustering show that electricity cells in the same category are clustered in geographic space to 
some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a 
comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the 
proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load 
forecasting demonstrate that the proposed prediction-interval construction method can effectively 
convey the uncertainties in input variables. 
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1. Introduction 
 

1.1 Aims and Difficulties 
 
Power map, or city map of electricity, is a useful tool for 

the visualization and tendency assessment of urban energy 
application [1-3]. The power map integrates GIS-based 
maps of electrical network, renewable resources, land use 
conditions, building types, etc., with historical & real-
time data series of users’ electricity consumption, weather 
changes, and economic fluctuations, etc. [4]. Energy 
audit, power system planning, customer management, high-
dimensional analysis and visualization of data assets can be 
accomplished with a power map. In addition to the above 
functionalities, a prediction-based power map may also 
provide applications like behavioral analysis for power 
users, load forecasting at the level of substations, feeders, 
transformers, and possibly customers, and spatio-temporal 
load forecasting (STLF), etc. Actually, the basis of 
prediction-based power map is the ability of forecasting, 
displaying and evaluating the spatial and temporal tendency 
of electricity load within a utility’s service area, and STLF 

is the foundation for building a prediction-based power map. 
In STLF, the service area of a utility can be divided into 

a group of cells according to geographical location. In 
different cells, the growth pattern of cellular load takes on 
a situation of diversity, considering the differences in 
traffic conditions, land-use types, historical loads, and the 
access of renewable energy resources and electric vehicles. 
The diverse growth patterns of cellular load call for targeted 
modeling and forecasting method. Constructing one model 
for each cell is possible; however, it is not advisable, because 
random disturbances and indistinctive features in a single 
cell may lead to larger forecasting error; in addition, it is 
not efficient. Except for the feature of diversity, electricity 
cells may also present out some features of aggregation, 
such as spatial aggregation, load-type aggregation and load 
characteristic aggregation. Cells with similar properties 
may distribute in clusters and they share a similar load 
growth pattern. Thus, how to balance the diversity and 
similarity of electricity cells in the process of spatio-
temporal load modelling, it is a problem deserves to be 
studied. 

Under normal conditions, STLF needs a multiple scenario 
capability - the ability to produce a set of reasonable 
forecasts that cover the uncertainty of future load growth 
[5]. The uncertainty of STLF covers two major aspects: 1) 
the uncertainty relationship between cellular load and 
relevant factors, which arises in the process of model 
training; 2) the uncertainty of input variables (forecast data 
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of some relevant factors, such as GDP, population, mean 
annual temperature, etc.), which calls for special attention 
in the process of model application. Considering that the 
historical data for model training is factual and accurate, 
the forecasting model can be viewed as an objective 
expression of the nonlinear relationship between cellular 
load and relevant factors. Thus, the uncertainties in model 
training can be eliminated in theory. Nevertheless, in view 
of the uncertainties in input variables, how to obtain and 
evaluate the prediction intervals of spatio-temporal load is 
not an easy problem. 

 
1.2 Literature review 

 
In general, the state of the art STLF methods can be 

classified into three categories: land-usage simulation 
method, load density index method, and time series analysis 
method. 

1) Land-usage simulation method divides the service 
area into cellular regions and predicts load level of different 
cells [6-8]. By means of analyzing the characteristics of 
land usage and development laws, the newly developed or 
redeveloped loads are allocated spatiotemporally within 
the service area in a top-down way [9]. In some land-usage 
simulation methods, fuzzy logic or fuzzy reasoning have 
been applied to obtain the confidence level of land-usage 
decision rules, in order to reduce uncertainties in the 
process of land-usage simulation and get more accurate 
point forecasts [10-12]. Nevertheless, land-usage based 
method is typically used in situations where urban planning 
is uncertain and cellular load data is insufficient, the nature 
of this kind of method is land-usage forecasting more 
than load forecasting; the nonlinear relationship between 
cellular load and relevant factors is less applied due to 
the lack of data mining. Besides, this kind of method 
mainly focuses on reducing the uncertainties in land-usage 
decision, but pays less attention to obtaining the confidence 
intervals of STLF results. 

2) Load density index method applies to cases with a 
clear land-use planning. The load density of different cells 
can be determined by artificial experience, simple analogy, 
or classification [13]. However, these kinds of load density 
calculation methods are subjective on some level and the 
quantization degree of final results is not high. A better 
way is to divide the cells into different categories according 
to their load type, and find the nonlinear relationship 
between load density and relevant factors for each category 
of cells [14]; it is a way to balance the diversity and 
similarity of cellular load modelling. However, the existing 
cell classification process is mainly based on the feature of 
load-type aggregation, and the spatial aggregation feature 
of cells is ignored. In some load density index methods, the 
intuitionistic fuzzy theory has been utilized to describe the 
uncertainty that would appear in the process of load density 
selection, thus reducing the uncertainties in model 
construction and improving the accuracy of STLF [15, 16]. 

Nevertheless, the uncertainties in input variables of the 
forecasting model are not considered. 

3) Time series analysis method uses historical data of 
cellular load to construct the forecasting model of different 
cells. It is a method of constructing one time-series 
forecasting model for each cell. Commonly used forecasting 
models are exponential smoothing model (ESM), grey 
forecasting model (GFM), and so on [17]. As a bottom-
up way of STLF, time series analysis method performs 
better in regions with stable land-use planning and 
copious historical data of spatial electric load. However, 
indistinctive features in a single cell may lead to larger 
forecasting error. The aggregation features of cellular load 
need to be taken into further consideration. 

Some strategies in short-term load forecasting can 
provide references for STLF. In some studies of short-
term load forecasting, to solve the problem of load 
diversity, load series are decomposed into a set of different 
frequency components by wavelets or differential empirical 
mode decomposition [17, 18]; to balance the diversity 
and similarity of load patterns, different consumers are 
aggregated into several clusters [19, 20]. Then, each 
component or cluster is separately forecasted with neural 
networks or other regression models [21, 22]. It has been 
shown that careful clustering of consumers for aggregation 
can result in smaller forecasting errors [23]. As far as we 
know, there are not many researches regarding the 
application of similar strategies in STLF. 

Generally, for cells with similar geographical conditions 
and load characteristics, there is a certain nonlinear 
relationship between cellular load and its relevant factors 
[14]. Based on the uncertainties in relevant factors, STLF 
results in the form of prediction intervals can be obtained, 
which can provide more information about uncertainties in 
input variables of STLF model than point forecasts. Even 
though methods have been tried to reduce the uncertainties 
in STLF and some results have been achieved [12, 24], the 
uncertainties in input variables do exist and they are 
inevitable to some extent; researches on how to obtain and 
evaluate the prediction intervals of spatio-temporal load are 
still relatively infrequent. 

 
1.3 Contribution of the paper 

 
Based on in-depth review of the available STLF 

methods in literature, the main contribution of this paper 
can be summarized as follows. 

A new STLF method based on multi-level clustering and 
category-oriented forecasting model training is proposed, 
and sampled blind number is introduced to evaluate the 
uncertainties in input variables and build prediction intervals 
of spatio-temporal load. 

 
1.4 Structure of the paper 

 
The rest of the paper is organized as follows: Section 2 
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introduces the procedure, data acquisition, and subroutines 
of the proposed STLF methodology. Section 3 describes 
5 evaluating indices. Section 4 presents results and 
discussions of the test case. Section 5 concludes the 
paper with some remarks for future study in STLF. 

 
 

2. Spatio-temporal Load Forecasting Methodology 
 

2.1 Procedure of proposed methodology 
 
In general, the procedure of proposed STLF methodology 

consists of 5 steps, as shown in Fig. 1. The 5 steps are 
briefly introduced below. 

Step 1: Different data sources for STLF of the service 
area, including GIS based data layers, time series data of 
electrical load, and socio-economic data series, are used to 
construct the spatio-temporal database. 

Step 2: The service area is divided into a number of 
equal-sized cells; the intrinsic and external properties of 
cells can be obtained based on spatio-temporal database. 

Step 3: All the cells are grouped into different categories 
after 3 rounds of k-means clustering, based on 3 types of 
vectors corresponding to 3 cellular intrinsic properties. 

1 2 3[ , , ]inx X X X=

,max ,ij ij l ij ly P D S= =å

1 2 3[ , , ]ex ex ex exx x x x=

{ } { }, , ,max, [ ( ), ( )], ( ) , 1, 2, ,ij k ij k in k ex k ij k kx y x t x t P t t T= = L

 
Fig. 1. Procedure of proposed STLF method 
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Step 4: For each category of cells, the non-linear 
relationship between cellular load and relevant factors 
(denoted by intrinsic properties and external properties) is 
modeled by SLS-SVRNs. 

Step 5: Take cellular intrinsic properties and predicted 
external properties as input variables of the forecasting 
model, and use sampled blind number to represent 
uncertainties of the external properties. Considering the 
transmission of uncertainties in the forecasting model, 
prediction intervals of cellular load can be obtained with 
adjustable confidence levels. 

 
2.2 Data acquisition and processing 

 
For this study, both spatio-temporal and electrical data 

are used. The STLF process begins with data collection 
from different sources; these data include geographical 
landscape, land-use type, socioeconomic variations, weather 
conditions, power grid structure, geographic distribution of 
power facilities, historical peak load in different strategic 
points, like substations and feeders, etc. All these data are 
organized in a multi-dimensional spatio-temporal database 
that allows extracting information related to specific cells 
according to the needs of the STLF methodology. 

Electrical load is distributed non-uniformly in the area of 
a utility’s service zone. By dividing the service area into a 
group of equal-sized subzones according to geographical 
location, the information of spatial load distribution can be 
presented in the form of a grid: each subzone, known as a 
cell [25]. Each cell is represented as C(i, j) (i=1,2,…, Nr, 
j=1,2,…, Nc), where Nr and Nc are the number of rows and 
columns in the grid, respectively. Electrical load in the area 
of a cell is defined as cellular load in this paper. 

Historical cellular load is the basis of STLF, and it can 
be derived from the data of feeders [26]. Suppose that the 
maximum load and power supply area of feeder l in year tk 
are respectively , kl tP  and Sl, then load density in the power 
supply area of feeder l can be expressed as , , /

k kl t l t lD P S= . 
If the common area of C(i, j) and feeder l is Sij,l, then the 
cellular load of C(i, j) in year tk can be obtained from the 
following equation [27]:  

 
 ,max , ,( ) ( )

kij k ij k l t ij ly t P t D S= =å  (1) 
 
The relevant factors of cellular load are various, 

including urban planning, historical load, GDP, population, 
etc. From an overall perspective, all the relevant factors 
can be divided into 2 types: the first type is intrinsic 
properties of cells, such as distance to surrounding 
facilities, land-use type and historical load, which can be 
used to distinguish the cell from others; the other type is 
external properties of cells, such as regional GDP, 
population, and mean annual temperature, which are all 
macroscopic quantities and the values are the same for 
different kinds of cells in the service area. The intrinsic and 

external properties of cells can be expressed as: 
 

 1 2 3[ , , ]inx X X X=  (2) 
 1 2 3[ , , ]ex ex ex exx x x x=  (3) 

 
where xin and xex represent data vectors of cellular intrinsic 
and external properties, respectively. X1, X2 and X3 denote 
the data vectors of distance to surrounding facilities, land-
use type, and historic peak load in past 3 years, respectively. 
xex1, xex2 and xex3 are the data vectors of regional GDP, 
population, and mean annual temperature, respectively.  

 
2.3 Multi-level clustering of cells considering their 

aggregation features 
 
Intrinsic properties are unique for different electricity 

cells，and they are closely related to cellular load. In 
practice, electricity cells may present some aggregation 
features on account of their differences in intrinsic 
properties. For instance, if group the cells into different 
categories according to their distances to surrounding 
facilities, the cells in each category may present the feature 
of spatial aggregation; if the cells are classified according 
to their land-use type, then cells of each classification may 
have relevant load-types, and we can call it load-type 
aggregation; furthermore, if the cells are clustered based on 
their historical load, then the load density and load growth 
trend for cells in each cluster may share a high degree of 
similarity, and we can name it as load characteristic 
aggregation. For the aim of balancing diversity and 
similarity in the modelling of cellular load, we use multi-
level clustering to group the cells into different categories, 
considering the aggregation features of electricity cells. 

As shown in Fig. 1, in the first level of clustering, X1= 
[x1,1, x1,2, x1,3] works as the feature vector, where x1,1, x1,2, 
x1,3 represents the minimum distance from a cell to 
surrounding main roads, transportation hubs, and public 
buildings (such as hospitals, schools and government 
offices). In the second level of clustering, X2=[x2,1, x2,2,…, 
x2,5] serves as the feature vector, where x2,1, x2,2, …, x2,5 are 
the respective percentage of different land-use types, 
including residential land, commercial land, industrial land, 
municipal land, and others. In the third level of clustering, 
X3=[x3,1,x3,2,x3,3] is used as the feature vector, where x3,1, 
x3,2, x3,3 represent cellular peak loads in the past 3 years, 
and all the cells are grouped into c3 categories in the end. 

Each level of cell clustering is implemented by k-means 
algorithm in this paper, and the number of clusters for k-
means can be obtained by optimizing the silhouette 
coefficient; interested readers can refer to [28] for more 
details. For the initialization of cluster centers, we use the 
center point selection method proposed in [29]. The core 
idea of this center point selection method is to pick data 
points that are as far away from one another as possible, 
interested readers can refer to [29] for more details. 
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2.4 Construction of load forecasting model for each 
category of cells with SLS-SVRNs 

 
In this section, we construct one forecasting model for 

each category of cells obtained in multi-level clustering. In 
other words, c3 different forecasting models should be 
constructed, as shown in Fig. 2. Generally, for cells with 
similar geographical conditions and load characteristics, 
there is a certain nonlinear relationship between cellular 
load and its relevant factors [30]. Hence, we use intrinsic 
and external properties of the cell as the input, cellular load 
as the output, to train the forecasting models. 

Suppose that the number of cells is np for category 
p(p=1,2,…,c3), and the duration of historical data 
(historical cellular load, GDP, population, temperature, 
etc.) is T(T >3) years, then cellular load yij(tk) and its 
relevant factors xij(tk)=[xin(tk), xex(tk)] can form a data set for 
each category of cells, which includes (T-3)·np pairs of 
training samples. The subset of training samples for 
category p can be expressed as: 

 

{ }( ), ( ) ( , ) ; 4,5,6, ,p ij k ij k kS x t y t C i j Category p t Té ù= Î =ë û L  

  (4) 
 
According to Equs. (2)(3)(4), if the relevant factors are 

fully taken into consideration during the model construction 
process, input vector of the forecasting model could be 
of high dimension. Besides, the number of training samples 
for constructing the forecasting model depends on the 
amount of cells with similarities, which means the scale 
of training samples could be small or large. Thus, it is 
necessary to solve problems of high-dimension modeling 
with small samples and high-dimension modeling with large 
samples at the same time. 

Considering the ability of neural networks in modelling 
unspecified nonlinear relationship between load and 
relevant factors [31], and the advantage of least squares 
support vector regression (LS-SVR) in solving problems 
with small samples and high dimensions, a combined 
algorithm, sparse least squares support vector regression 
networks (SLS-SVRNs), is proposed in this paper to model 
the growth patterns of cellular load. The structural diagram 
of SLS-SVRNs is shown in Fig. 3. 

First, in order to improve the ability of LS-SVR in 
handling large samples, all the training samples are 
mapped to a high-dimensional feature space to obtain their 
maximum independent vector group; thus, a sparse least 
squares support vector regression machine (SLS-SVM) can 
be constructed. Second, use SLS-SVM to fit the nonlinear 
relationship between cellular load and relevant factors 
preliminarily, making full use of its ability in high-
dimension modelling. Third, pre-trained parameters of 
radial basis function, obtained from SLS-SVM, are passed 
to radial basis function networks (RBFNs) for further 
optimization of the forecasting model, and gradient descent 

learning algorithm is used to optimize the parameters. The 
finally obtained SLS-SVRNs algorithm is suitable for the 
problem of nonlinear and high-dimensional modelling with 
small or large samples. 

As shown in Fig. 2, with c3 subsets of training samples, a 
series of forecasting models, namely fp(xin, xex), p=1,2,…,c3, 
can be constructed for different categories of cells, based 
on SLS-SVRNs. And point forecasts of spatio-temporal 
load can be obtained with these category-oriented 
forecasting models. 

 
2.5 Interval forecasting of spatio-temporal load 

considering uncertainties in input variables 
 
The input variables of the STLF model consist of 

intrinsic and external properties of the cells. In developed 
regions, the cellular intrinsic properties, including distance 
to surrounding facilities and land-use type, remain about 
the same over a period of time in the future, and cellular 
historical loads are exact values. Nevertheless, the 
forecasts for external properties, including regional GDP, 
population, and mean annual temperature, are the main 
sources of uncertainty in this research. 

Historical values or forecasts of regional GDP, 
population, and mean annual temperature are easily 
accessible from local government or meteorological bureau. 
However, time series of these input variables are usually 

 
Fig. 2. Flowchart of cellular load regression 
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Fig. 3. Structural diagram of SLS-SVRNs algorithm 
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not mutually independent and the forecasts of them are 
uncertain. In this paper, we use sampled blind number to 
represent the uncertainties in input variables. 

Use xex,i(i =1, 2, 3) to represent different external 
properties. For the predicted value of xex,i, namely ,ˆex ix  
with a confidence level of (1-α)%, divide its prediction 
interval into m sub-intervals, and the range of the L-th 
sub-interval is 1

, ,[ , ]L L
ex i ex ix x< > < + > . Suppose that the probability 

of 1
, , ,[ , ]L L

ex i ex i ex ix x x< > < + >Î  is Pi,L, and we can define ,
L
ex iX  as 

the average value of ,ˆex ix  in the L-th sub-interval: 
 

 
1
,

,
, , , ,

,

1 ˆ ˆ ˆ( )
L
ex i

L
ex i

xL
ex i ex i ex i ex ix

i L

X x P x dx
P

+

= ×ò  (5) 

 
where ,ˆ( )ex iP x  is the point probability of ,ˆex ix . 

On this basis, we can define sampled blind number to 
characterize the uncertainty of ,ˆex ix : 

 

 , , ,
,

( 1, 2, , )
( )

0

L
i L ex i ex i

ex i
P x X L mb x

others
ì = =

= í
î

L
    (6) 

 
where b(xex,i) is the sampled blind number of ,ˆex ix ; m  is 
the order of b(xex,i); (Pi,L,Xi,L) is the L-th sample of b(xex,i); 
Xi,L is the value of the L-th sample; Pi,L is the confidence 
level of b(xex,i) at .

L
ex iX . Generally, if the confidence level 

of ,ˆex ix  is relatively high (e.g. higher than 99.5%), then 
the following equation can be obtained. 

 

 ,
1

1
m

i L
L

P
=

»å  (7) 

 
Thus, we can use sampled blind number to express the 

uncertainties in input variables in a discrete form. 
For each of the well-trained forecasting models in 2.4, 

there are p (p =3) input variables representing external 
properties of the cell. Use sampled blind number to 
characterize the uncertainties in the forecasting results of p 
external properties. For each external property, suppose 
that there are m samples and m corresponding confidence 
levels, and then there will be H = m p input scenarios for the 
forecasting model. 

With H scenarios of input variables, we can obtain H 
point forecasts from the forecasting model (for every 
electricity cell at each year in the future), and all the point 
forecasts can also be expressed in the form of sampled 
blind number: 

 

 , ˆ ˆ ( 1,2, , )
ˆ( )

0
y h hP y y h H

b y
others

= =ì
= í
î

L
 (8) 

 1 2
,1 ,2 ,ˆ ˆ ˆ ˆ( , , , , )L L Lp

h in ex ex ex py f x x x x= L  (9) 

 , 1, 1 2, 2 ,y h L L p LpP P P P= L  (10) 
 

where ˆ( )b y  is the forecasting result in the form of 
sampled blind number; ˆhy  and Py,h are the value and 

confidence level of the h-th sample; f(·) is the forecasting 
model; 1 2

,1 ,2 ,ˆ ˆ ˆ, , ,L L Lp
ex ex ex px x xL  are the sample values of predicted 

external properties; 1, 1 2, 2 ,L L p LpP P PL  are the confidence 
levels of 1 2

,1 ,2 ,ˆ ˆ ˆ, , ,L L Lp
ex ex ex px x xL . The expected value of the 

forecasting result can be expressed as: 
 

 ,
1

ˆ ˆ ˆ[ ]
H

h y h h
h

y E y p y
=

= =å  (11) 

 
Thus, the uncertainties in input variables can be 

transferred to output variables via the forecasting models. 
Based on sampled blind number, we can express the 

forecasting results of cellular load in the form of prediction 
intervals, with adjustable confidence levels. 

As shown in Fig. 4, the entire sample values belonging 
to ˆ( )b y  and their corresponding confidence levels are 
listed in sequence. Use ŷ  as the dividing point, and the 
sample values can be divided into 2 parts: the left part and 
the right part. Start from the leftmost, and remove w 
samples from the left part; accordingly, start from the 
rightmost, and remove w samples from the right part. 
Suppose that the gross confidence level for the removed 2w 
samples is Pα, and the gross confidence level for remaining 
samples is P1-α, then we can obtain: 

 

 , ,( +1)
1 1

1 1

w w

y h y H h
h h

P P P

P P

a

a a

-
= =

-

ì
= +ï

í
ï = -î

å å          (12) 

 
Then, the prediction interval of spatio-temporal load, 

namely [ , ]w wy y- + , with a confidence level of P1-α, can be 
estimated as: 

 

 , 1 +1 ,

, 1 1 ,

ˆ ˆ( ) ( -
ˆ ˆ( ) ( )

w w y w w w y w

w H w y H w H w w y H w

y y P y y P
y y P y y P

- -
+

+ +
- - + - + -

ì - =ï
í - = -ïî

）
    (13) 

 
or 

 

 

+1 , , 1

, , 1

1 , , 1

, , 1

ˆ ˆ

ˆ ˆ

w y w w y w
w

y w y w

H w y H w H w y H w
w

y H w y H w

y P y P
y

P P
y P y P

y
P P
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- + - - - ++
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Fig. 4. Schematic diagram for confidence interval evaluation 
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By adjusting the value of w, we can obtain the prediction 
intervals of cellular load for each cell with different 
confidence levels. Thus, interval forecasting of spatio-
temporal load considering uncertainties in input variables 
can be accomplished. 

 
 

3. Evaluating Indices 
 

3.1 Indices for performance evaluating of point 
forecasting models 

 
APE calculates the absolute percentage error between 

the actual and forecast values, therefore, measure the 
forecast accuracy of cellular load at some year with 
percentage values, one gets: 

 

 100%act for
cell

act

x x
APE

x
-

= ´  (15) 

 
where xact and xfor are actual and forecast values of cellular 
load, respectively. 

MAPE calculates the mean absolute percentage error 
between the actual and forecast values, therefore, measure 
the forecast accuracy of a point-forecasting model in 
statistics with percentage values, we can get: 

 

, ,

1 ,

1 100%
cN

i act i for
cells years

ic i act

x x
MAPE or MAPE

N x=

-
= ´å  (16) 

 
where MAPEcells is the MAPE of cellular load for Nc cells 
in a fixed year; MAPEyears is the MAPE of cellular load for 
a fixed cell in Nc years; Nc is the number of cells or years. 

 
3.2 Indices for accuracy evaluation of interval 

predictions 
 
By evaluating the accuracy of prediction intervals, both 

the forecasting error of STLF models and uncertainties in 
input variables can be taken into consideration. In this 
paper, we use 3 indices, including PICP (prediction interval 
coverage probability) [32], PINAW (prediction interval 
normalized average width) [33], and CDI (coverage 
density index), to evaluate the accuracy of prediction 
intervals. 

PICP is a measure of the probability of target values 
covered by prediction intervals: 
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where Nc denotes the number of samples, θi is an indication 
of the coverage behavior of the i-th prediction interval. We 
denote yi is the i-th target value, then θi =1 if yi lies 

between the upper bound and the lower bound of the i-th 
prediction interval; otherwise, θi=0. A larger PICP means 
more targets are covered by the constructed prediction 
intervals. 

PICP evaluates the coverage of prediction intervals, and 
PINAW is used to limit the width of prediction intervals. 
PINAW is defined as: 
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where Ui and Li are the upper bound and lower bound of 
the i-th prediction interval, Ui > L i; R equals to the 
maximum minus minimum of the target values. Obviously, 
PINAW is larger than 0. Normalization by the range R is to 
numerically compare quality of prediction intervals, which 
corresponds to the cellular load at different cells and 
different years.  

From a decision-making perspective, smaller PINAW 
with a larger PICP are preferred. Thus, we define CDI as a 
combined index which simultaneously assesses the 
coverage probability and width of interval predictions; it 
can be written as: 

 
 CDI PICP PINAW=   (19) 

 
CDI measures the coverage probability for unit width 

of prediction intervals. It tries to compromise between 
the PINAW and PICP, and find a tradeoff between 
informativeness(PINAW) and validity (PICP) of prediction 
intervals. Generally, a lager CDI means higher coverage 
density for prediction intervals. 

 
 

4. Results and Discussions 
 

4.1 Description of the test case 
 
In this paper, we take some region in Pudong, Shanghai 

as the test case. The service area of the test case includes 
24 main roads, 3 transportation hubs, and 15 vital public 
buildings. Based on grid partitioning, the service area was 
divided into 515 cells, with the spatial resolution of 
300 m ×300 m . As shown in Fig. 5, all 515 black cells lay 
scattered in the ij coordinates. Electricity raw data for the 
test case is obtained from local grid company with time 
span from 2000 to 2015; the annual sample data of external 
relevant factors, including GDP, population, and mean 
annual temperature, is obtained from Shanghai Statistics 
Bureau and Shanghai Metrological Bureau. In the 
following subsections, we use historical data of cellular 
load and external properties from 2000 to 2012, along with 
geographical condition and land-use type of each cell, to 
forecast the spatio-temporal load of the service area from 
2013 to 2015.  
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Fig. 5. Map of the service area after cellular division 
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Fig. 6. Evolution of cellular peak load in terms of land-use 

type and distance to main roads 
 

4.2 Multi-level cell clustering 
 
Electrical load distribution in the service area is related 

to many factors. In terms of land-use type and distance to 
main roads, Fig. 6 shows the evolution of cellular peak 
load through interpolation surface fitting.  

In Fig. 6, x-axis represents land-use type of different 
cells, y-axis represents the distance from each cell to the 
nearest main road, and z-axis represents the peak load of 
each cell in 2012. It is obvious that in the service area, cells 
with commercial and industrial land-use types entail high 
demand of load. Also, the distance to main roads is of great 
importance in determining the cellular load condition. 
Therefore, it is reasonable to select distance to surrounding 
facilities and land-use type as the feature vectors in multi-
level cell clustering. 

Group the cells into different categories according to X1, 
X2 and X3, and the results of multi-level cell clustering are 
shown in Fig. 7. In Fig. 7(a), different colors are used to 
represent the results of fist-level cell clustering; all the cells 
are clustered into 4 categories, considering the feature of 
spatial aggregation. In Fig. 7(b), color depth is introduced 
to distinguish different categories in the second-level cell 
clustering; based on the results of first-level cell clustering, 
all the cells are further clustered into 9 categories, 
considering the feature of load-type aggregation. In Fig. 7 

(c), different textures are added to the cells so as to 
differentiate diverse categories in the third-level cell 
clustering; finally, 15 categories are formed, considering 
the feature of load characteristic aggregation. The number 
of cells in each category is shown in Fig. 7(d). 

 
4.3 Forecasting model training and evaluation 

 
For cells belonging to the same category, intrinsic 

properties are similar and external properties are the same; 
in order to establish forecasting models specifically and 
reduce the computational complexity and random 
disturbances at the same time, forecasting models can be 
trained for each category of cells. Totally, 15 forecasting 
models were trained based on SLS-SVRNs. 

Table 1. Simulation data sets of the test case. 

Data sets Periods (Year) Number of data samples 
 (per category) 

Training set 2003-2006, 2008-2011 128~1048 
Validation set 2007, 2012 32~262 

Testing set 2013-2015 48~393 
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Fig. 7. Results of multi-level cell clustering 
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Fig. 8. Number of samples for each forecasting model 
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For each forecasting model, 3 simulation data sets were 
constructed; they are training data set, validation data set, 
and testing data set. As shown in Table 1 and Fig. 8, the 
number of training samples for each forecasting model 
ranges from 128 to 1048, which covers 2 orders of 
magnitude. For training sets with large number of samples, 
the sparse process in SLS-SVRNs is helpful for reducing 
the computational complexity and improving the 
computation efficiency. 

Use the 15 well-trained forecasting models to predict the 
cellular load of different cells, and we can obtain the 
forecasted spatio-temporal load of the service area in 2013, 
2014, and 2015. The forecasting results and forecasting 
error are illustrated in Fig. 9. As shown in Fig. 9, the 
forecasting error (measured by APE) of cellular load ranges 
from 0 to approximately 7% in 2013, and 0 to almost 8% in 
2014 and 2015; the forecasting error distributes uniformly 
in the service area. 

In order to illustrate the effectiveness of the proposed 
method, STLF results using different methods are 
compared; the comparison results are shown in Table 2 and 
Fig. 10. The selected STLF methods for comparison 
include ESM (exponential smoothing method) [34], GFM 
(grey forecasting method) [35] and LDIM (load density 
index method) [14]. 

On the one hand, fix the year and compute the MAPE of 

all the cells, the MAPE at each year using different 
methods are shown in Table 2. It is clear that the MAPE of 
proposed method is less than that of ESM, GFM, and 
LDIM, in the year of 2013, 2014, and 2015. On the other 
hand, fix the cell and compute the MAPE of predicted 
cellular load from 2013 to 2015 for each cell; the results 
are shown in Fig. 10(a). As shown in Fig. 10(a), the MAPE 
of predicted cellular load using LDIM and GFM is mainly 
distributed from 4% to 6% and 6% to 8%; for ESM, the 
MAPE of almost 40% cells reaches the range of 8% to 
15%. In contrast, the proposed method can achieve better 
STLF results: for 51.84% of the cells, MAPE is below 4%; 
comparisons between forecast results and actual spatial 
load data show a low spatio-temporal error. 

Furtherly, the proposed method is tested with the data 
in [14] to prove its objectivity, and the forecasting results 
are illustrated in Fig. 10 (b). As with the results in Fig. 10 
(a), the MAPEs of different methods in Fig. 10 (b) show 
that the quantity of cells with a lower forecasting error 
using the proposed method is larger than these using 
other methods, which also indicates a higher forecasting 
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Fig. 9. Spatio-temporal load forecasting results and 
forecasting error of the service area in 2013, 2014 
and 2015 

Table 2. MAPE (year-fixed) of STLF results using different 
methods 

MAPE (%) Year 
ESM GFM LDIM Proposed method 

2013 7.02 6.35 5.06 3.11 
2014 7.88 8.26 5.45 4.16 
2015 9.51 9.29 7.33 4.55 

Average 8.14 7.97 5.95 3.94 
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methods 
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accuracy of the proposed method. 
The above results have proved that existing STLF 

methods, such as ESM, GFM and LDIM, may have lower 
accuracy in the process of STLF, without considering the 
aggregation features of cells. For the proposed method, by 
means of analyzing the relationship between cellular load 
and relevant factors, and constructing STLF models for 
cells belonging to different categories, the accuracy of 
STLF have been significantly improved. 

 
4.4 Interval load forecasting 

 
In order to deal with the problem of data uncertainty 

regarding external properties, interval forecasting of spatio-
temporal load is introduced in this paper based on the 
method in subsection 2.5. Using the methods mentioned 
in [36-38]，the interval predictions of GDP, population 
and mean annual temperature in 2013, 2014 and 2015 
can be obtained, as shown in Table 3; the forecast error 
obeys Gaussian distribution, under the confidence level of 
99.73% (3 sigma).  

Use 5-order sampled blind number to characterize the 
uncertainties in interval predictions of GDP, population and 
mean annual temperature, the results are shown in Table 4. 
In this way, the interval predictions can be represented in a 
discrete form. 

In the process of interval load forecasting, the well-
trained forecasting models for each category of cells were 

still used. For each forecasting model, input variables 
denoting intrinsic properties remained the same, and input 
variables denoting external properties were assigned with 
sampled blind number. As shown in Table 4, there are 5 
samples and 5 corresponding confidence levels for each 
external property, and then there will be H =53=125 input 
scenarios for each forecasting model. 

With 125 scenarios of input variables, 125 point 
forecasts were obtained from the forecasting model for 
every electricity cell in each year of 2013, 2014 and 2015. 
Furthermore, the forecasting results of cellular load were 
expressed in the form of prediction intervals, with 
confidence levels of 95%, 96%, 97%, 98% and 99%. By 
comparing the forecasting results of all the cells with actual 
values, the indices for accuracy evaluation of interval 
predictions were obtained, as listed in Table 5. 

As shown in Table 5, the index of PICP increases with 
the rising of confidence level, which indicates that the 
coverage of prediction intervals is improving with the 
growing of forecasting results reliability, or we can say that 
the confidence level of cellular load is consistent with PICP 
to a certain extent; this kind of result is what we want to 
see. However, if we take a look at the index of PINAW, we 
will find that PINAW also increases with the rising of 
confidence level, which demonstrates that the width of 
prediction intervals grows wider with the growing of 
forecasting results reliability. 

In other words, the improving coverage of prediction 
intervals is to an extent influenced by the widening of 
prediction intervals. In this case, the index of CDI, which 
evaluates the coverage density of predicted intervals of 
cellular load, can be used to compare the forecasting 
results at different confidence levels. As we can see in 
Table 5, considering 5 confidence levels, the maximum 
values of CDI in the year of 2013, 2014 and 2015, are 
reached at confidence levels of 97%, 96% and 97%, 
respectively. This kind of result shows that, in the presence 
of uncertainties in input variables, the confidence level 
and accuracy of STLF results cannot be improved 

Table 3. Interval forecasts of input variables (external 
properties) 

 ˆGDPx /million dollars ˆ popx /thousand people ˆtemx / Co  
2013 [6708.68, 6856.37] [916.38, 935.12] [17.32, 17.78] 
2014 [7093.35, 7281.47] [943.75, 961.07] [17.15, 17.61] 
2015 [7547.32, 7725.64] [969.51, 986.25] [17.05, 17.41] 
 

Table 4. Sampled blind number of input variables (external 
properties) 

Year Sampled blind 
number xi,1 xi,2 xi,3 xi,4 xi,5 

XGDP,1 6729.48 6756.26 6782.52 6808.79 6835.57 
PGDP,1 0.0346 0.2383 0.4515 0.2383 0.0346 
Xpop,2 919.02 922.42 925.75 929.08 932.48 
Ppop,2 0.0346 0.2383 0.4515 0.2383 0.0346 
Xtem,3 17.38 17.47 17.55 17.63 17.72 

2013 

Ptem,3 0.0346 0.2383 0.4515 0.2383 0.0346 
XGDP,1 7119.85 7153.96 7187.41 7220.86 7254.97 
PGDP,1 0.0346 0.2383 0.4515 0.2383 0.0346 
Xpop,2 946.19 949.33 952.41 955.49 958.63 
Ppop,2 0.0346 0.2383 0.4515 0.2383 0.0346 
Xtem,3 17.21 17.30 17.38 17.46 17.55 

2014 

Ptem,3 0.0346 0.2383 0.4515 0.2383 0.0346 
XGDP,1 7572.44 7604.77 7636.48 7668.19 7700.52 
PGDP,1 0.0346 0.2383 0.4515 0.2383 0.0346 
Xpop,2 971.87 974.90 977.88 980.86 983.89 
Ppop,2 0.0346 0.2383 0.4515 0.2383 0.0346 
Xtem,3 17.10 17.17 17.23 17.29 17.36 

2015 

Ptem,3 0.0346 0.2383 0.4515 0.2383 0.0346 
 

Table 5. Evaluation of interval load forecasting. 

Year Confidence level (%) PICP (%) PINAW (%) CDI 
95 83.12 56.33 1.48 
96 87.33 58.01 1.51 
97 92.67 61.03 1.52 
98 93.01 62.11 1.50 

2013 

99 95.62 65.67 1.46 
95 83.54 56.50 1.48 
96 87.07 57.95 1.50 
97 91.84 61.76 1.49 
98 92.92 62.92 1.48 

2014 

99 94.09 66.39 1.42 
95 82.78 56.78 1.46 
96 84.39 58.77 1.44 
97 91.09 61.76 1.47 
98 90.79 63.61 1.43 

2015 

99 94.37 65.28 1.45 
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simultaneously in the overall process of confidence level 
adjustment. In other words, the optimum value of 
confidence level and forecasting accuracy may not be 
reached at the same time. Thus, when selecting the 
results of STLF, it is necessary to compromise between 
confidence level and forecasting accuracy according to 
demand. 

 
 

5. Conclusions 
 
In this paper, a new STLF method based on multi-level 

clustering and SLS-SVRNs is presented. The proposed 
method constructs various models to forecast the load 
variation and load distribution in the service area, 
considering aggregation features of electricity cells. In 
addition, sampled blind number is used to evaluate the 
influences of uncertainties in input variables on STLF 
results. One advantage of this method is that external and 
intrinsic properties of the cells are both considered in the 
process of forecasting model training. 

From the results presented in this paper, we can reach 
the following conclusions. 

(i) The spatial distribution and time variation of cellular 
load are closely related to intrinsic properties of electricity 
cells. The cellular features of spatial aggregation, load-type 
aggregation and load characteristic aggregation can be 
identified by multi-level clustering of electricity cells based 
on intrinsic properties. 

(ii) The proposed method, in which the aggregation 
features of electricity cells have been taken into 
consideration, could achieve a higher accuracy in the point 
forecasting of spatio-temporal load, compared with STLF 
methods of ESM, GFM and LDIM. 

(iii) Under a certain condition of uncertainties in input 
variables, the confidence level and forecasting accuracy 
of STLF results cannot be improved simultaneously in 
the overall process of confidence level adjustment. It is 
necessary to compromise between confidence level and 
forecasting accuracy according to demand. 

STLF is a foundation for building the prediction-based 
power map. Moreover, the STLF method proposed in this 
paper is helpful for the visualization of cellular load 
aggregations and the interval prediction of spatio-temporal 
load, based on multi-level clustering and uncertainty 
transmission analysis. At present, electricity cells used in 
the proposed method are all defined as equal-sized squares, 
without considering the spatial distribution and load 
characteristics of power consumers, and the shape of 
buildings. For this deficiency, the proposed STLF method 
will be constantly improved and refined in future studies. 
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