• Title/Summary/Keyword: spatial redundancy

Search Result 86, Processing Time 0.024 seconds

Time Efficient Stereo Matching Algorithm Using Spatial Redundancy Removal (처리 속도 개선을 위한 공간 중복성 제거 기반 스테레오 매칭 알고리즘)

  • Choi, Min-Sheo;Choi, Jae-Young;Ro, Yong-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.188-191
    • /
    • 2010
  • 스테레오 매칭은 Robot Vision 분야에서 가장 활발하게 연구가 진행되어온 주제이다. 과거 많은 연구들은 스테레오 매칭 알고리즘의 정확도를 높이거나 처리속도를 개선하는 것 중 어느 한 쪽에만 집중하고 있었으며, 두 가지를 동시에 고려한 연구는 상대적으로 연구가 미흡한 실정이다. 본 논문에서는 영상의 공간적 중복 성질을 이용하여 스테레오 매칭 알고리즘의 처리속도를 획기적으로 개선하는 방법을 제안하고, 처리 속도 감소에 따라 증가되는 disparity map 추정 오차를 보상하는 기술을 제안한다. 구체적으로 Dynamic Programming (DP) 기반 스테레오 매칭 알고리즘에 제안한 속도 개선 방법을 적용하고, 개선된 Adaptive Support Weight Filter를 사용하여 보다 효과적인 오차 보상을 실현 하였다. 체계적인 실험을 통해, 본 논문에서 제안 하는 스테레오 매칭 알고리즘은 처리속도와 정확도를 동시에 개선할 수 있음을 검증하였다.

  • PDF

Enhanced Prediction Algorithm for Near-lossless Image Compression with Low Complexity and Low Latency

  • Son, Ji Deok;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • This paper presents new prediction methods to improve compression performance of the so-called near-lossless RGB-domain image coder, which is designed to effectively decrease the memory bandwidth of a system-on-chip (SoC) for image processing. First, variable block size (VBS)-based intra prediction is employed to eliminate spatial redundancy for the green (G) component of an input image on a pixel-line basis. Second, inter-color prediction (ICP) using spectral correlation is performed to predict the R and B components from the previously reconstructed G-component image. Experimental results show that the proposed algorithm improves coding efficiency by up to 30% compared with an existing algorithm for natural images, and improves coding efficiency with low computational cost by about 50% for computer graphics (CG) images.

Adaptive coding algorithm using quantizer vector codebook in HDTV (양자화기 벡터 코드북을 이용한 HDTV 영상 적응 부호화)

  • 김익환;최진수;박광춘;박길흠;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.130-139
    • /
    • 1994
  • Video compression algorithms are based on removing spatial and/or temproal redundancy inherent in image sequences by predictive(DPCM) encoding, transform encoding, or a combination of predictive and transform encoding. In this paper, each 8$\times$8 DCT coefficient of DFD(displaced frame difference) is adaptively quantized by one of the four quantizers depending on total distortion level, which is determined by characteristics of HVS(human visual system) and buffer status. Therefore, the number of possible quantizer selection vectors(patterns) is 4$^{64}$. If this vectors are coded, toomany bits are required. Thus, the quantizer selection vectors are limited to 2048 for Y and 512 for each U, V by the proposed method using SWAD(sum of weighted absolute difference) for discriminating vectors. The computer simulation results, using the codebook vectors which are made by the proposed method, show that the subjective and objective image quality (PSNR) are goor with the limited bit allocation. (17Mbps)

  • PDF

A Novel DWT-SVD Canny-Based Watermarking Using a Modified Torus Technique

  • Lalani, Salima;Doye, D.D.
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.681-687
    • /
    • 2016
  • Today's modern world requires a digital watermarking technique that takes the redundancy of an image into consideration for embedding a watermark. The novel algorithm used in this paper takes into consideration the redundancies of spatial domain and wavelet domain for embedding a watermark. Also, the cryptography-based secret key makes the algorithm difficult to hack and help protect ownership. Watermarking is blind, as it does not require the original image. Few coefficient matrices and secret keys are essential to retrieve the original watermark, which makes it redundant to various intentional attacks. The proposed technique resolves the challenge of optimizing transparency and robustness using a Canny-based edge detector technique. Improvements in the transparency of the cover image can be seen in the computed PSNR value, which is 44.20 dB.

Error Resilient MPEG-4 Encoding Method (오류 내성을 갖는 MPEG-4 부호화 기법)

  • 현기수;문지용;김기두;강동욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.105-109
    • /
    • 2002
  • The main ideas of hybrid video coding methods are to reduce the spatial and temporal redundancy for efficient data compression. If compressed video stream is transmitted through the error-prone channel, bitstream can be critically damaged and the spatio-temporal error propagates through successive frames at the decoder because of drift noise in the references between encoder and decoder. In this paper, I propose the lagrangian multiplier selection method in the error-prone environment. Finally, it is shown that the performance comparisons of the R-D optimized mode decision are made against the conventional method and simulation results are given in the following.

  • PDF

Cooperative Hybrid-ARQ Protocols: Unified Frameworks for Protocol Analysis

  • Byun, Il-Mu;Kim, Kwang-Soon
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.759-769
    • /
    • 2011
  • Cooperative hybrid-automatic repeat request (HARQ) protocols, which can exploit the spatial and temporal diversities, have been widely studied. The efficiency of cooperative HARQ protocols is higher than that of cooperative protocols because retransmissions are only performed when necessary. We classify cooperative HARQ protocols as three decode-and-forward-based HARQ (DF-HARQ) protocols and two amplified-and-forward-based HARQ (AF-HARQ) protocols. To compare these protocols and obtain the optimum parameters, two unified frameworks are developed for protocol analysis. Using the frameworks, we can evaluate and compare the maximum throughput and outage probabilities according to the SNR, the relay location, and the delay constraint. From the analysis we can see that the maximum achievable throughput of the DF-HARQ protocols can be much greater than that of the AF-HARQ protocols due to the incremental redundancy transmission at the relay.

Real - Time Applications of Video Compression in the Field of Medical Environments

  • K. Siva Kumar;P. Bindhu Madhavi;K. Janaki
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.73-76
    • /
    • 2023
  • We introduce DCNN and DRAE appraoches for compression of medical videos, in order to decrease file size and storage requirements, there is an increasing need for medical video compression nowadays. Using a lossy compression technique, a higher compression ratio can be attained, but information will be lost and possible diagnostic mistakes may follow. The requirement to store medical video in lossless format results from this. The aim of utilizing a lossless compression tool is to maximize compression because the traditional lossless compression technique yields a poor compression ratio. The temporal and spatial redundancy seen in video sequences can be successfully utilized by the proposed DCNN and DRAE encoding. This paper describes the lossless encoding mode and shows how a compression ratio greater than 2 (2:1) can be achieved.

Landsat TM Image Compression Using Classified Bidirectional Prediction and KLT (영역별 양방향 예측과 KLT를 이용한 인공위성 화상데이터 압축)

  • Kim Seung-Jin;Kim Tae-Su;Park Kyung-Nam;Kim Young-Choon;Lee Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • We propose an effective Landsat TM image compression method using the classified bidirectional prediction (CBP), the classified KLT and the SPIHT. The SPIHT is used to exploit the spatial redundancy of feature bands selected in the visible range and the infrared range separately. Regions of the prediction bands are classified into three classes in the wavelet domain, and then the CBP is performed to exploit the spectral redundancy. Residual bands that consist of difference values between the original band and the predicted band are decorrelated by the spectral KLT Finally, the three dimensional (3-D) SPIHT is used to encode the decorrelated coefficients. Experiment results show that the proposed method reconstructs higher quality Landsat TM image than conventional methods at the same bit rate.

Efficient Multispectral Image Compression Using Variable Block Size Vector Quantization (가변 블럭 벡터 양자화를 이용한 효율적인 다분광 화상 데이터 압축)

  • Ban, Seong-Won;Kim, Byeong-Ju;Seok, Jeong-Yeop;Gwon, Seong-Geun;Gwon, Gi-Gu;Kim, Yeong-Chun;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.703-711
    • /
    • 2001
  • In this paper, we propose efficient multispectral image compression using variable block size vector quantization (VQ). In wavelet domain, we perform the variable block size VQ to remove intraband redundancy for a reference band image that has the lowest spatial variance and the best correlation with other band. And in wavelet domain, we perform the classified interband prediction to remove interband redundancy for the remaining bands. Then error wavelet coefficients between original image and predicted image are residual variable block size vector quantized to reduce prediction error. Experiments on remotely sensed satellite image show that coding efficiency of the proposed method is better than that of the conventional method.

  • PDF

The Study of Comparison of DCT-based H.263 Quantizer for Computative Quantity Reduction (계산량 감축을 위한 DCT-Based H.263 양자화기의 비교 연구)

  • Shin, Kyung-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.195-200
    • /
    • 2008
  • To compress the moving picture data effectively, it is needed to reduce spatial and temporal redundancy of input image data. While motion estimation! compensation methods is effectively able to reduce temporal redundancy but it is increased computation complexity because of the prediction between frames. So, the study of algorithm for computation reduction and real time processing is needed. This paper is presenting quantizer effectively able to quantize DCT coefficient considering the human visual sensitivity. As quantizer that proposed DCT-based H.263 could make transmit more frame than TMN5 at a same transfer speed, and it could decrease the frame drop effect. And the luminance signal appeared the difference of $-0.3{\sim}+0.65dB$ in the average PSNR for the estimation of objective image quality and the chrominance signal appeared the improvement in about 1.73dB in comparision with TMN5. The proposed method reduces $30{\sim}31%$ compared with NTSS and $20{\sim}21%$ compared to 4SS in comparition of calculation quantity.

  • PDF