Abstract
We propose an effective Landsat TM image compression method using the classified bidirectional prediction (CBP), the classified KLT and the SPIHT. The SPIHT is used to exploit the spatial redundancy of feature bands selected in the visible range and the infrared range separately. Regions of the prediction bands are classified into three classes in the wavelet domain, and then the CBP is performed to exploit the spectral redundancy. Residual bands that consist of difference values between the original band and the predicted band are decorrelated by the spectral KLT Finally, the three dimensional (3-D) SPIHT is used to encode the decorrelated coefficients. Experiment results show that the proposed method reconstructs higher quality Landsat TM image than conventional methods at the same bit rate.
웨이블릿 영역에서 영역별 양방향 예측, KLT (Karhunen-Loeve transform)/sup [13]/, 및 3차원 SPIHT (set partition in hierarchical trees)/sup [1]/를 이용한 인공위성 화상데이터의 부호화 방법을 제안하였다. 가시광선 영역과 적외선 영역에서 선택된 기준대역 (feature band)에 대하여 SPIHT를 행하여 부호화함으로써 대역내 (intraband) 중복성을 제거한다. 기준대역을 예측대역(prediction band)들에 대해서는 웨이블릿 변환 (wavelet transform)을 행한 후, 빛의 반사 및 역의 방사에 따라 대역별 특성이 다름을 이용하여 영역분류를 하고 영역별 양방향 예측 (classified bidirectional prediction)을 행함으로써 대역간 (interband) 중복성을 제거한다. 원 인공위성 화상데이터와 부호화 된 인공위성 화상데이터 사이의 오차값으로 구성된 오차대역 (residual band)들에 대하여 KLT를 행함으로써 대역간 중복성이 제거되고 계수값들은 고유치의 크기에 따라서 분광적으로 정렬됨으로써 3차원 SPIHT의 부호화 효율을 향상시킨다. 인공위성 화상데이터에 대한 모의실험을 통하여 제안한 방법의 부호화 효율이 기존의 방법에 비하여 우수함을 확인하였다.