Comparison of recognition rate with distance on stereo face images base PCA

PCA기반의 스테레오 얼굴영상에서 거리에 따른 인식률 비교

  • Park Chang-Han (Department of Computer Engineering, Kwangwoon University) ;
  • Namkung Jae-Chan (Department of Computer Engineering, Kwangwoon University)
  • Published : 2005.01.01

Abstract

In this paper, we compare face recognition rate by distance change using Principal Component Analysis algorithm being input left and right image in stereo image. Change to YCbCr color space from RGB color space in proposed method and face region does detection. Also, after acquire distance using stereo image extracted face image's extension and reduce do extract robust face region, experimented recognition rate by using PCA algorithm. Could get face recognition rate of 98.61%(30cm), 98.91%(50cm), 99.05%(100cm), 99.90%(120cm), 97.31%(150cm) and 96.71%(200cm) by average recognition result of acquired face image. Therefore, method that is proposed through an experiment showed that can get high recognition rate if apply scale up or reduction according to distance.

본 논문에서는 스테레오 영상에서 좌ㆍ우측 영상을 입력받아 거리 변화에 따른 얼굴인식률을 PCA(Principal Component Analysis) 알고리듬으로 비교한다. 제안된 방법에서는 RGB컬러공간에서 YCbCr컬러공간으로 변환하여 얼굴영역을 검출한다. 또한 스테레오 영상을 이용하여 거리를 취득한 후 추출된 얼굴영상의 확대 및 축소하여 보다 강건한 얼굴영역을 추출하고, PCA 알고리듬으로 인식률을 실험하였다. 취득된 얼굴영상의 평균적인 인식결과로 98.61%(30cm), 98.91%(50cm), 99.05%(100cm), 99.90%(120cm), 97.31%(150cm), 96.71%(200cm)의 인식률을 얻을 수 있었다. 따라서 실험을 통하여 제안된 방법은 거리에 따라 확대 및 축소를 적용하면 높은 인식률을 얻을 수 있음을 보였다.

Keywords

References

  1. M.-H. Yang, D. J. Kriegman, and N. Ahuja, 'Detecting faces in images: A survey,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34-58, Jan. 2002 https://doi.org/10.1109/34.982883
  2. 이학찬, 박장한, 남궁연, 남궁재찬, '스테레오 영상을 이용한 물체 추적 방법', 대한전자공학회, 제39호 SP편 제5호, pp. 522-534, 2002
  3. Z. Sun, G. Bebis, X. Yuan, S. J. Louis, 'Genetic Feature Subset Selection for Gender Classification: A Comparison Study', Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on, 2002. pp.165-170. Dec 2002 https://doi.org/10.1109/ACV.2002.1182176
  4. F. Samaria and S. Young, 'HMM based architecture for face identification', Image and Vision Computing, vol. 12, pp. 537-543, 1994 https://doi.org/10.1016/0262-8856(94)90007-8
  5. B.A. McLindin, 'Baselining illumination variables for improved facial recognition system performance', Video/Image Processing and Multimedia Communications, 2003. 4th EURASIP Conference, Vol. 1, pp. 417-422, 2-5 July 2003 https://doi.org/10.1109/VIPMC.2003.1220497
  6. W. A. IJsselsteijn, H. de Ridder, J. Vliegen, 'Subjective evaluation of stereoscopic images: effects of camera parameters and display duration', Circuits and Systems for Video Technology, IEEE Transactions, Vol. 10, no. 2, pp. 225-233, March 2000 https://doi.org/10.1109/76.825722
  7. Z. Sun, G. Bebis, X. Yuan, S. J. Louis, 'Genetic Feature Subset Selection for Gender Classification: A Comparison Study', Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on, 2002. pp.165-170. Dec 2002 https://doi.org/10.1109/ACV.2002.1182176
  8. Y. Zhong, J. A.K., D. Jolly, M.-P, 'Object tracking using deformable templates', Pattern Analysis and Machine Intelligence, IEEE Transactions, Vol. 22, no. 5, pp. 544-549, May. 2000 https://doi.org/10.1109/34.857008
  9. T. Liang, H. K. Kwan, 'Automatic localization of human eyes in complex background', Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium, Vol. 5, pp. 669-672, 26-29 May 2002 https://doi.org/10.1109/ISCAS.2002.1010792
  10. L. Chengjun, H. Wechsler, 'Independent component analysis of Gabor features for face recognition', Neural Networks, IEEE Transactions. Vol. 14, no. 4, pp. 919-928, July 2003 https://doi.org/10.1109/TNN.2003.813829
  11. C. Liang-hua, L. Wei-Chung, 'Visual surface segmentation from stereo', Image and Vision Computing, Vol. 15, pp. 95-106, 1997 https://doi.org/10.1016/S0262-8856(96)01116-X
  12. Chi, D., Ngan, K.N.: 'Face Segmentation Using Skin-Color map in Videophone Applications', IEEE Trans. Circuits and systems for video technology, June, 1999, 9, (4), pp. 551-564 https://doi.org/10.1109/76.767122
  13. O. D. Faugeras, 'Three-Dimensional Computer Vision', MIT Press, 2001