운용 가능한 위성의 수가 증가하고 기술이 진보함에 따라 영상정보의 성과물이 다양해지고 많은 양의 자료가 축적되고 있다. 본 연구에서는 기구축된 영상정보를 활용하여 부족한 훈련자료의 문제를 극복하고 딥러닝(deep learning) 기법의 장점을 활용하고자 전이학습과 변화탐지 네트워크를 활용한 고해상도 위성영상의 변화탐지를 수행하였다. 본 연구에서 활용한 딥러닝 네트워크는 공간 및 분광 정보를 추출하는 합성곱 레이어(convolutional layer)와 시계열 정보를 분석하는 합성곱 장단기 메모리 레이어(convolutional long short term memory layer)로 구성되었으며, 고해상도 다중분광 영상에 최적화된 정보를 추출하기 위하여 커널(kernel)의 차원에 따른 정확도를 비교하였다. 또한, 학습된 커널 정보를 활용하기 위하여 변화탐지 네트워크의 초기 합성곱 레이어를 고해상도 항공영상인 ISPRS (International Society for Photogrammetry and Remote Sensing) 데이터셋에서 추출된 40,000개의 패치로 학습된 값으로 초기화하였다. 다시기 KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) 영상에 대한 실험 결과, 전이학습과 딥러닝 네트워크를 활용할 경우 기복 변위 및 그림자 등으로 인한 변화에 덜 민감하게 반응하며 분류 항목이 달라진 지역의 변화를 보다 효과적으로 추출할 수 있었으며, 2차원 커널보다 3차원 커널을 사용할 때 변화탐지의 정확도가 높았다. 3차원 커널은 공간 및 분광정보를 모두 고려하여 특징 맵(feature map)을 추출하기 때문에 고해상도 영상의 분류뿐만 아니라 변화탐지에도 효과적인 것을 확인하였다. 본 연구에서는 고해상도 위성영상의 변화탐지를 위한 전이학습과 딥러닝 기법의 활용 가능성을 제시하였으며, 추후 훈련된 변화탐지 네트워크를 새롭게 취득된 영상에 적용하는 연구를 수행하여 제안기법의 활용범위를 확장할 예정이다.
본 연구는 산불 위험 예측의 주요 인자인 10시간 사연료습도(10-h FMC)를 산악기상관측망 기상자료로 추정하는 방법을 마련하기 위해 수행되었다. 안성(도심지)과 홍릉 두 지점(숲 속, 숲 밖)의 자동기상관측소에서 기상인자와 10-h FMC를 측정하고 이를 이용해 10-h FMC 추정식을 도출했다. 도출한 추정식을 이용해 지난 6년간(2013~2018년) 산불발생 다발일의 10-h FMC를 분석하고 전국 10-h FMC 지도를 제작했다. 기상인자(기온, 풍속, 목재평형함수율, 강우량)와 10-h FMC의 회귀분석 결과 목재평형함수율이 가장 효율적으로 10-h FMC를 설명했음을 확인했다. 목재평형함수율을 이용해 도출한 10-h FMC 추정식은 모형 적합과 검증과정 모두에서 높은 적합도를 보였다. 각 연구지의 추정식을 서로 다른 연구지에 적용하면 모형의 적합도가 같은 연구지에서 만든 식을 적용했을 때보다 줄어들었지만 여전히 만족할 만한 결과를 보였다. 본 연구의 회귀식은 10-h FMC와 목재평형함수율 사이 강우 후 건조반응 차이와 식생 유무가 10-h FMC에 미치는 영향을 반영하지 못해 적합도가 줄어든 것으로 나타났다. 마지막으로 도출한 추정식을 사용한 공간분석을 통해 지난 6년간 산불발생 다발일의 산불 중 70% 이상이 10.5% 이하의 10-h FMC 조건에서 발생했음을 확인했다. 본 연구 결과는 산악기상관측망과 연계하여 전국 산지의 10-h FMC를 추정하는 데 사용할 수 있다. 10-h FMC는 산불 위험 예측 기초 연구 자료로 활용되어 재해 관련 국가 정책 결정에 기여할 것으로 판단된다.
본 연구의 목적은 운동량방정식에서 이송가속도항을 제외한 지배방정식을 이용하여 정형 사각 격자 기반의 2차원 지표면 침수해석 모형을 개발하는 것이다. 공간적 이산화는 유한체적법을 이용하였으며, 시간적 이산화는 음해법을 적용하였다. 모형의 실행시간을 단축하기 위해서 CPU를 이용한 병렬계산 기법을 적용하였다. 개발된 모형의 검증을 위해서 해석해와 비교하고, 가상 도메인에서 수치실험을 통해 모형의 거동을 평가하였다. 또한 국내의 장호원 지역과 모로코의 Sebou 강 지역에 대해서 각기 다른 공간해상도로 침수해석을 수행하고, 그 결과를 CAESER-LISFLOOD (CLF) 모형을 이용한 해석 결과와 비교하였다. 모형의 검증 결과 해석해와 잘 일치된 모의 결과를 나타내었고, 가상 도메인에서의 흐름 해석도 타당한 것으로 평가되었다. 장호원 지역과 Sebou 강 지역에 대한 본 연구와 CLF 모형의 침수모의 결과는 침수심과 침수범위에서 서로 유사하게 나타났으며, 장호원 지역의 경우 홍수위험지도의 침수범위와도 유사한 값을 보였다. 본 연구와 CLF 모형의 모의결과에서 상이한 부분에 대해서는 각각의 모의결과를 비교 평가하였다. 연구결과 본 연구에서 제시된 모형은 홍수터에서의 침수 양상을 잘 모의할 수 있는 것으로 평가되었다. 그러나 본 연구에서 제시된 모형을 이용하여 침수해석을 할 경우에는 도메인 구성 방법과 지배방정식 및 해석 방법에 의한 모형의 특징과 한계점을 충분히 고려해야 할 것이다.
탁도는 부유물질에 의한 빛의 산란 또는 흡수로 인한 수체의 흐림을 나타내는 수치로 수질 관리 분야에서 중요 지표로 활용되고 있다. 탁도는 소규모의 하천에서 변동성이 심할 수 있으며, 이는 국가하천의 수질에 직접적으로 영향을 준다. 따라서 고해상도의 탁도 공간정보 산출은 매우 중요하다. 이 연구에서는 Korea Multi-Purpose Satellite-3 및 -3A (KOMPSAT-3/3A) 영상으로부터 한강 수계 하천의 고해상도 탁도 매핑을 위한 eXtreme Gradient Boosting (XGBoost) 알고리즘 기반의 탁도 산출 모델을 개발하였다. 이를 위해 총 24장의 KOMPSAT-3/3A 영상과 150장의 Landsat-8 영상으로부터 계산된 대기 상단(Top Of Atmosphere, TOA) 반사율을 활용하였으며, Landsat-8 TOA 반사율은 KOMPSAT-3/3A의 관측 파장 대역에 적합하도록 교차검보정을 수행하였다. 국가수질자동관측망에서 측정된 탁도를 탁도 산출 모델의 참조자료로 사용하였고, 입력 변수로는 탁도가 실측된 위치에서의 TOA 분광반사율과 탁도 분석에 널리 이용되어 온 분광지수인 정규식생지수, 정규수분지수, 정규탁도지수, 그리고 Moderate Resolution Imaging Spectroradiometer (MODIS)의 대기 산출물(에어로졸 광학 두께, 수증기량, 오존)을 사용하였다. 또한 고탁도와 저탁도에 대한 KOMPSAT-3/3A TOA 분광반사율을 분석하여 탁도를 설명할 수 있는 새로운 정규탁도지수(new normalized difference turbidity index, nNDTI)를 제안하였고, 이를 탁도 산출 모델에 입력 변수로 추가하였다. XGBoost 기반 탁도 산출 모델은 현장관측 탁도와 비교하여 2.70 NTU의 평균 제곱근 오차(root mean square error, RMSE) 및 14.70%의 정규화된 RMSE(normalized RMSE)를 가지는 탁도를 예측하여 우수한 성능을 보였으며, 이 연구에서 새롭게 제안한 nNDTI가 탁도 산출에 있어 가장 중요한 변수로 사용되었다. 개발된 탁도 산출 모델을 KOMPSAT-3/3A 영상에 적용하여 하천 탁도를 고해상도로 매핑하였으며, 탁도의 시공간적 변동에 대한 분석이 가능하였다. 이 연구를 통하여 고해상도의 정확한 탁도 공간정보 산출에 KOMPSAT-3/3A 영상이 매우 유용함을 확인할 수 있었다.
한반도는 삼면이 바다로 둘러싸여 있는 지정학적 특성으로 인해 수출입 물동량의 97% 이상을 해양을 통하여 교류하고 있으며, 세계화 국제화 추세에 따라 외국적 선박 및 국제 여객선을 통한 외국여행객들의 출입이 증가하는 추세에 있다. 또한 국민소득 향상과 해양에 대한 관심도 높아짐에 따라 해양 레저객이 급증하고 있어 해양에서의 사건, 사고가 연간 끊임없이 발생하고 있다. 해양에서 치안을 담당하는 해양경비안전본부의 관할 면적은 국토의 약4.5배에 달하며, 해안선의 길이는 도서지역 포함하여 14,963km, 안전센터 1개소 당 94km를 관장하고 있으며, 경비함정 1척당 $24,068km^2$를 담당하고 있어 효율적인 순찰 및 방범활동이 이루어지지 않고 있다. 본 연구에서는 이러한 문제 인식아래 해양경비안전본부에서 취급하는 해양 범죄의 현황과 추세를 분석하여 보다 효율적인 순찰, 방범 방안을 제시하고자 한다. 증가하는 해양 범죄에 효율적으로 대응하기 위한 방안으로 1900년대 초 미국에서 개발되어 활용하고 있는 지리적 프로파일링 기법의 도입을 제안하였다. 지리적 프로파일링은 공간분석과 지도화를 응용하여 범죄 위험 지역을 예측하고 상습적으로 발생하는 지역에 대해 특별관리 하는 핫스팟 분석 등 다양한 기법으로 활용되고 있으며, 국내에서도 경찰청에서 2008년부터 도입하여 죄종별, 시간대별, 지역별, 범죄 다발지, 범죄 발생 우려지 등으로 구분하여 일상화된 순찰 개념이 아닌 고도화된 분석에 의한 순찰과 방범활동에 활용하고 있다. 이러한 지리적 프로파일링을 해양에서도 도입하여 해양 범죄를 유형별, 장소별, 시기별, 기간별 등으로 세분화하여 분석, "해양 범죄 지도"를 작성하고, 이를 토대로 살인, 강도, 절도, 실종, 변사, 충돌 등 중요범죄에 대한 위험발생 지역을 "범죄 지점" 일명, 크리미널 포인트(Criminal Point)로 지정 하고 이 지역을 중심으로 시기별, 시간대별로 구분하여 경비함정을 배치하고 정기 또는 수시 경비활동과 방범활동 등을 전개한다면 해양 범죄 및 해양 사고 대응력이 향상될 것으로 기대한다.
준분포형 수문모형인 TOPMODEL은 산림유역의 유출량, 주 유출경로 및 수질을 공간적으로 예측하는데 많이 적용된다. TOPMODEL은 물리모형이 아니라 일종의 개념모형이며 주요 구성요소는 지형지수와 토양의 수평전달계수로 각각 지표면과 지표하 유출의 기여면적을 계산하는데 이용된다. 본 연구는 우리나라의 소규모 산림유역에서 TOPMODEL의 적용성을 검증하기 위하여 수행되었다. 시험지는 1979년부터 임업연구원에서 운용하고 있으며 서울 근교 경기도 광릉시험림에 위치해 있다. 활엽수림 유역은 임령이 약 80년, 유역면적이 22.0ha이고, 침엽수림 유역은 임령이 약 22년, 유역면적이 13.6ha이다. 관측자료는 활엽수 유역의 경우 1995년 7월과 2000년 6월에 발생한 2개 강우-유출사상이고 침엽수 유역의 경우 1995년과 1999년 7월 그리고 2000년 8월의 3개 강우-유출사상을 이용하였다. 지형지수는 $10m{\times}10m$의 수치지형도를 만들어 계산하였다. 지형지수 분포는 활엽수림 유역의 경우 2.6에서 11.1, 침엽수림 유역은 2.7에서 16.0으로 나타났다. 모형의 예측 효율성을 목적함수로 최적화한 결과 모형매개변수(m)와 유역의 평균 포화수평전달계수($lnT_0$)가 높은 민감도를 나타내었다. 매개변수의 최적값은 활엽수림 유역의 경우 m값은 0.034와 0.038 그리고 $lnT_0$값은 8.672와 9.475였으며, 침엽수 유역의 경우 m값은 0.031, 0.032, 0.033 그리고 $lnT_0$값은 5.969, 7.129, 7.575였다 이들 값을 이용하여 모의한 결과 모형의 예측 효율성은 활엽수림 0.958과 0.909 그리고 침엽수림 0.825, 0.922와 0.961로서 비교적 높게 나타났다. 강우-유출량 관측치와 모의치를 이용하여 강우-수문곡선을 작성한 결과 두 유역 모두 유출지연시간은 잘 일치하였다. 일부 강우-유출사상의 경우 총유출량과 첨두유량의 관측치와 모의치 간에 다소 차이를 보였지만 TOPMODEL은 전반적으로 10% 이하의 오차범위에서 총유출량과 첨두유량을 예측할 수 있었다. 결론적으로 TOPMODEL은 우리나라의 미계측 산림유역에서 유출량을 산정하는데 유용한 수문모형이다.
목적: PET과 MR 영상을 체계적으로 합성i분석하여 각각의 영상기법이 갖는 단점을 보완하고 기능을 향상시킴으로써 보다 정확하고 유용한 임상정보를 얻을 수 있다. 두 영상을 공간적으로 합성하기 위해서 머리 표피 경계점들 간의 거리를 최소화하는 알고리즘을 이용할 경우 경계점 추출의 정확성 및 견실성과 거리 계산 속도가 합성 알고리즘의 성능을 결정하는 중요한 요소가 된다. 본 연구에서는 PET 영상의 경계 추출과 거리 계산 방법을 개선하고 이를 이용하여 PET과 MR 영상을 3차원적으로 합성하였다. 대상 및 방법: 공간적인 합성을 위한 영상처리기법의 핵심인 경계점 추출을 위해 PET영상에서는 방출스캔 sinogram의 경계를 강조한 후 재구성한 횡단면으로부터 2 mm 간격으로 머리 표피 경계점들을 추출하였으며 MR 영상에서는 각 횡단면마다 약 2도 간격으로 경계점들을 추출하였다. 두 영상의 모든 경계점들 간의 평균 유클리디안 거리를 최소화하는 3차원 가상공간 상에서의 위치 이동과 회전 각도를 최소자승법을 이용하여 구한 후 PET영상을 역 전환하여 위치 정합을 하였다. 평균 거리의 계산 속도를 향상시키기 위하여 고정된 대상의 각 경계점을 중심으로 하여 주변 공간 정들에서의 거리를 순차적으로 계산하고 이들의 최소값을 취하는 방법으로 거리지도를 구성하였으며 최소자승법에서 경계점들 간의 위치가 변할 때마다 매번 평균거리를 다시 계산하지 않고 거리지도를 참조하여 평균 거리를 산출하는 방법을 사용하였다. 위치 정합된 두 영상의 동시 표현을 위하여 PET 영상의 화소값에 $0.4{\sim}0.7$부터 1사이의 범위로 정규화된 MR 영상의 화소 값으로 가중치를 주는 가중정규화 방법을 사용하였다. 결과: 방출스캔의 sinogram을 이용함으로써 PET영상의 경계를 견실하게 추출할 수 있었으며, 거리지도를 이용하여 거리 계산을 한 결과 계산 속도를 향상시킬 수 있었다. 정상인의 뇌영상에 대해 위치 정합을 실시한 결과 평균 거리 오차는 2mm 이하였다. 가중정규화 방법을 사용하였을 때 합성된 영상의 정성적인 식별 명확도가 향상하였다. 결론: 견실한 PET 영상 경계점 추출과 거리지도를 이용한 계산 속도의 향상을 통해 뇌 PET과 MR 영상 합성기법의 성능을 개선할 수 있었으며 이를 이용하며 개발한 영상정합 프로그램은 임상 환경에서 유용하게 사용될 수 있을 것이다.
본 연구에서는 Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS) 등의 광역관측 위성영상을 이용한 해수나 연안수의 클로로필 농도 분석을 통해 가능성이 확인되었던 밴드 비를 이용한 비교적 간단한 추정 모델을 수체의 크기와 폭이 현저히 작고 탁도가 있는 하천에 대해 클로로필-a 농도값을 추정하고자 고해상도 위성영상에 Two-band 및 Three-band reflectance 모델을 적용하여 가능성을 파악하였다. 특히 RapidEye 영상을 이용하여 일반적으로 탁도가 있는 수체에 대해 Red와 NIR 영역을 활용하는 이들 모델에 Red-edge(RE) 밴드를 적용하였다. Red와 NIR을 이용한 Two-band Reflectance 모델은 계산식의 결정계수 $R^2$ 값이 0.38로 유의성 없는 결과를 나타내었다. 그러나 RapidEye의 Red-edge (RE) 파장 대를 이용한 Red-RE Two-band 모델과 Red-RE-NIR Three-band 모델을 이용한 계산식에 대해서는, 2차함수에 의한 Three-band 모델의 결과는 Red-RE Two-band 모델의 결과와 통계적인 값이 거의 유사하였고 Two-band와 3차함수에 의한 Three-band 모델 추정식은 각각 0.66, 0.73 의 $R^2$값을 나타내어 Red-edge 밴드의 적용 가능성을 보였고, 실측치와의 Root Mean Square Error (RMSE)는 24.8, 22.4 mg $m^{-3}$, Relative Percent Difference(RPD)는 각각 1.30, 1.29로 1.5 이하의 대략적인 추정(Approximate Prediction) 수준을 나타내었다. 고해상도 위성영상에 Red-RE-NIR Three-band 모델을 적용한 계산식을 이용해 대략적인 추정이지만 가장 유의한 수준의 클로로필-a 농도를 추정할 수 있었다. 영상에서 추정된 클로로필-a 분포를 비교하였을 때 3차함수에 의한 Three-band 모델 추정식이 Two-band 모델에 비해 낮은 값의 분포를 보였다. 향후 하천의 스펙트럼을 실측하여 파장별 부유물질, 유기물과의 상관성 및 클로로필 농도와의 간섭 정도를 시뮬레이션하여 보정식을 산출 적용한다면 탁도가 다소 높은 하천에서의 클로로필-a 농도 계산식의 정확도를 더욱 높일 수 있을 것으로 기대된다.
산불은 우리나라 산림의 주요 교란요소중의 하나로써 산림 구조와 기능에 매우 큰 영향을 미치며, 산불피해강도에 따라 피해 후 식생회복 과정이 달라질 수 있다. 대형산불 피해지의 피해강도와 식생회복 과정을 파악하기 위해서는 많은 인력과 예산이 필요하지만 위성영상자료를 이용한 산불피해지의 피해강도 분석은 신속한 정보는 물론 대규모 피해지의 객관적인 결과를 원격적으로 취득할 수 있다. 위성과 항공기 탑재 센서들은 피해규모를 맵핑하고 진행산불 특성을 평가하며 산불피해후의 생태적 영향 특성을 규명하는데 활용되고 있다. 본 연구에서는 2000년 삼척산불, 2002년 청양산불 그리고 2005년 양양 대형산불 피해지를 구분하고 피해강도를 정량적으로 분석하기 위해 정규탄화지수(Normalized Burn Ratio: NBR)를 활용하였다. 본 연구를 위해 산불피해 전후 동일시기의 Landsat 위성영상 자료를 활용하여 정규탄화지수(NBR)를 산출하고 30m 해상도의 피해강도 패턴을 평가하였다. 산불피해강도 평가결과, 삼척산불 피해지는 피해강도 '중' 이상(${\Delta}NBR$ 152 이상) 지역이 전체의 65%를 차지하였으며 청양 예산산불피해지는 91%, 양양산불피해지는 65%로 나타나 3지역 중 청양 예산지역이 피해강도 측면에서만 보면 가장 큰 피해를 입은 것으로 분석되었다. 따라서 RS와 GIS를 이용하여 원격 탐지된 ${\Delta}NBR$은 대규모 산불피해지의 구분은 물론 산불피해강도를 공간적으로 정량화할 수 있다.
목적: 다수의 뇌 자료를 기반으로 구성된 통계적 화률뇌지도는 복잡하고 개인적인 편차가 큰 뇌의 형태학적, 기능적 특성을 분석하는데 유용하다. 특히 최근에 한국인의 정상 MR 영상을 기반으로 한 구조적 기능적 뇌 표준판과 구조적 확률뇌지도가 완성되었으며. 부검뇌의 조직절편을 활용한 세포구축학적 확률뇌지도가 도입되었다. 이 연구에서는 이들 자료를 활용하여 뇌 영상의 국소계수를 객관적으로 측정하기 위한 정량화 기법을 개발하였으며, 이를 이용하여 정상 한국인의 뇌 영상자료를 분석하였다. 대상 및 방법 : T1 MRI와 FDG PET에 대한 뇌 표준판을 성별, 연령별로 개발하였으며, 한국인 정상 MR 영상으로 만들어진 89개 뇌 영역의 구조적 확률뇌지도와 독일 율리히 연구센터에서 도입한 13개 브로드만 영역에 대한 세포구축학적 확률뇌지도를 뇌 표준판 위로 각각 비선형 변환하였다. 확률뇌지도에 정의된 각 뇌 영상의 국소계수는 확률에 의한 가중평균 또는 가중합으로 구하였다. 확률뇌지도를 이용한 예비 연구로 정상 노화에 따른 포도당대사의 변화가 대상회 내에서 전 후 위치에 따라 다르게 나타나는 가를 조사하였다. 결과: SPM과의 연계된 사용을 고려하여 Matlab 상에서 작성된 정량화 프로그램은 20초 미만에 1개의 공간정규화된 영상을 처리할 수 있었다. 대상회 포도당 대사에 대한 분석에서 후대상회에 대한 문측-전대상회 및 미측-전대상회의 계수 비는 정상 노화에 따라 매우 유의하게 감소하였다. 즉. 문측-전대상회/후대상회는 매 10년마다 3.1%씩 감소하였으며($P<10^{-11}$, r=0.81) 미측-전대상회/후대상회는 1.7%씩 감소하였다($P<10^{-8}$, r=0.72). 문측-전대상회와 미측-전대상회의 계수비 감소 역시 유의하였다(P<0.0005. r=0.52, 1.5%/year). 결론: 서양인 뇌에 기반한 확률뇌지도는 그동안 제한적으로만 사용되어 왔으나 한국인 뇌 표준판과 확률뇌지도 및 이 연구에서 개발한 정량화 기법은 일반에 공개하기로 하여 더욱 널리 쓰이게 되면 국내 뇌 연구 활성화에 기여할 것으로 기대 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.