DOI QR코드

DOI QR Code

Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image

고해상도 위성영상을 이용한 낙동강 유역의 클로로필-a 농도 추정

  • Choe, Eun-Young (Nakdong River Environment Research Center, National Institute of Environmental Research (NIER)) ;
  • Lee, Jae-Woon (Nakdong River Environment Research Center, National Institute of Environmental Research (NIER)) ;
  • Lee, Jae-Kwan (Nakdong River Environment Research Center, National Institute of Environmental Research (NIER))
  • 최은영 (국립환경과학원 낙동강물환경연구소) ;
  • 이재운 (국립환경과학원 낙동강물환경연구소) ;
  • 이재관 (국립환경과학원 낙동강물환경연구소)
  • Received : 2011.09.12
  • Accepted : 2011.10.23
  • Published : 2011.10.31

Abstract

This study assessed the feasibility to apply Two-band and Three-band reflectance models for chlorophyll-a estimation in turbid productive waters whose scale is smaller and narrower than ocean using a high spatial resolution image. Those band ratio models were successfully applied to analyzing chlorophyll-a concentrations of ocean or coastal water using Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS), etc. Two-band and Three-band models based on band ratio such as Red and NIR band were generally used for the Chl-a in turbid waters. Two-band modes using Red and NIR bands of RapidEye image showed no significant results with $R^2$ 0.38. To enhance a band ratio between absorption and reflection peak, We used red-edge band(710 nm) of RapidEye image for Twoband and Three-band models. Red-RE Two-band and Red-RE-NIR Three-band reflectance model (with cubic equation) for the RapidEye image provided significance performances with $R^2$ 0.66 and 0.73, respectively. Their performance showed the 'Approximate Prediction' with RPD, 1.39 and 1.29 and RMSE, 24.8, 22.4, respectively. Another three-band model with quadratic equation showed similar performances to Red-RE two-band model. The findings in this study demonstrated that Two-band and Three-band reflectance models using a red-edge band can approximately estimate chlorophyll-a concentrations in a turbid river water using high-resolution satellite image. In the distribution map of estimated Chl-a concentrations, three-band model with cubic equation showed lower values than twoband model. In the further works, quantification and correction of spectral interferences caused by suspended sediments and colored dissolved organic matters will improve the accuracy of chlorophyll-a estimation in turbid waters.

본 연구에서는 Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS) 등의 광역관측 위성영상을 이용한 해수나 연안수의 클로로필 농도 분석을 통해 가능성이 확인되었던 밴드 비를 이용한 비교적 간단한 추정 모델을 수체의 크기와 폭이 현저히 작고 탁도가 있는 하천에 대해 클로로필-a 농도값을 추정하고자 고해상도 위성영상에 Two-band 및 Three-band reflectance 모델을 적용하여 가능성을 파악하였다. 특히 RapidEye 영상을 이용하여 일반적으로 탁도가 있는 수체에 대해 Red와 NIR 영역을 활용하는 이들 모델에 Red-edge(RE) 밴드를 적용하였다. Red와 NIR을 이용한 Two-band Reflectance 모델은 계산식의 결정계수 $R^2$ 값이 0.38로 유의성 없는 결과를 나타내었다. 그러나 RapidEye의 Red-edge (RE) 파장 대를 이용한 Red-RE Two-band 모델과 Red-RE-NIR Three-band 모델을 이용한 계산식에 대해서는, 2차함수에 의한 Three-band 모델의 결과는 Red-RE Two-band 모델의 결과와 통계적인 값이 거의 유사하였고 Two-band와 3차함수에 의한 Three-band 모델 추정식은 각각 0.66, 0.73 의 $R^2$값을 나타내어 Red-edge 밴드의 적용 가능성을 보였고, 실측치와의 Root Mean Square Error (RMSE)는 24.8, 22.4 mg $m^{-3}$, Relative Percent Difference(RPD)는 각각 1.30, 1.29로 1.5 이하의 대략적인 추정(Approximate Prediction) 수준을 나타내었다. 고해상도 위성영상에 Red-RE-NIR Three-band 모델을 적용한 계산식을 이용해 대략적인 추정이지만 가장 유의한 수준의 클로로필-a 농도를 추정할 수 있었다. 영상에서 추정된 클로로필-a 분포를 비교하였을 때 3차함수에 의한 Three-band 모델 추정식이 Two-band 모델에 비해 낮은 값의 분포를 보였다. 향후 하천의 스펙트럼을 실측하여 파장별 부유물질, 유기물과의 상관성 및 클로로필 농도와의 간섭 정도를 시뮬레이션하여 보정식을 산출 적용한다면 탁도가 다소 높은 하천에서의 클로로필-a 농도 계산식의 정확도를 더욱 높일 수 있을 것으로 기대된다.

Keywords

References

  1. 강미아, 2009. 낙동강수계 관리체계 구축방안, 대한환경공학회지, 31(6): 395-400.
  2. 서영상, 이나경, 장이현, 황재동, 유신재, 임효숙, 2002. 클로로필 a 추정시 OSMI 밴드의 광학 반응 특성, 대한원격탐사학회지, 18(4): 187-199. https://doi.org/10.7780/kjrs.2002.18.4.187
  3. 윤영삼, 유재정, 김문수, 이혜진, 양상용, 2003. 낙동강유역 유달부하량 산정 및 특성 평가, 대한환경공학회 춘계학술연구발표회, 2003. 5. 1, pp. 1269-1275.
  4. 환경부, 2011. 수질오염공정시험기준(2011년도 개정본).
  5. Dall'Olmo, G., A. A. Gitelson and D. C. Rundquist, 2003. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters, Geophysical Research Letters, 30(18): 1938-1941. https://doi.org/10.1029/2003GL018065
  6. Dall'olmo, G., A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, 2005. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands, Remote Sensing of Environment, 96: 176-187. https://doi.org/10.1016/j.rse.2005.02.007
  7. Gitelson, A. A., 1992. The peak near 700 nm on reflectance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration, International Journal of Remote Sensing, 13: 3367-3373. https://doi.org/10.1080/01431169208904125
  8. Gitelson, A. A., D. Gurlin, W. J. Moses, and T. Barrow, 2009. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters, Environment Research Letter, 4: 045003. https://doi.org/10.1088/1748-9326/4/4/045003
  9. Gitelson, A. A., G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation, Remote Sensing of Environment, 112: 3582-3593. https://doi.org/10.1016/j.rse.2008.04.015
  10. Gons, H. J., 1999. Optical teledetection of chlorophyll-a in turbid inland waters, Environmental Science & Technology, 33: 1127-1132. https://doi.org/10.1021/es9809657
  11. Gordan, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, 1988. A semianalytic radiance model of ocean color, Journal of Geophysical Research, 93: 10909-10924. https://doi.org/10.1029/JD093iD09p10909
  12. Han, X., W. Zheng, and C. Wu, 2010. Chlorophyll-a Estimation Using Satellite Observations in Tai Lake, China, International Conference on Multimedia Technology(ICMT), IEEE.
  13. Jensen J. R., 2006. Remote Sensing of the Environment: An Earth Resource Perspective. Prentice Hall.
  14. Kaufman, Y. J., A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, 1997. The MODIS 2.1-$\mu$ m Channel-Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol, IEEE Transactions on Geoscience and Remote Sensing, 35: 1286-1298. https://doi.org/10.1109/36.628795
  15. Kneizys, F. X., L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, 1996. The MODTRAN 2/3 Report and LOWTRAN7 Model, Phillops Laboratory, Geophysics Directorate.
  16. Kutser, T., L. Metsamaa, N. Strombeck, and E. Vahtmae, 2006. Monitoring cyanobacterial blooms by satellite remote sensing, Estuarine, Coastal and Shelf Science, 67: 303-312. https://doi.org/10.1016/j.ecss.2005.11.024
  17. Matthews, M. W., 2010. Remote sensing of water quality parameters in Zeekoevlei, a hypertrophic, cyanobacteria-dominated lake, Cape Town, South Africa, Cape Town, M.Sc. of University of Cape Town.
  18. Moses, W., A. Gitelson, S. Berdnikov, and V. Povazhnyy, 2009. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS-The Azov Sea case study, IEEE Geoscience and Remote Sensing Letters, 6: 845-849. https://doi.org/10.1109/LGRS.2009.2026657
  19. Simis, S. G. H., S. W. M. Peters, and H. J. Gons, 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water, Limnology and Oceanography, 50: 237-245. https://doi.org/10.4319/lo.2005.50.1.0237
  20. Siswanto, E., J. Tang, H. Yamaguchi, Y. -H. Ahn, J. Ishizaka, S. Yoo, S. -W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang., and H. Kawamura, 2011. Empirical ocean-color algorithms to retireve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and east China Seas, Journal of Oceanography, 67: 627-650. https://doi.org/10.1007/s10872-011-0062-z
  21. Tassan, S., 1994. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters, Applied Optics, 33: 2369-2378. https://doi.org/10.1364/AO.33.002369
  22. Zhang, Y., H. Lin, C. Chen, L. Chen, B. Zhang, and A. A. Gitelson, 2011. Estimation of chlorophyll-a concentration in estuarine waters: case study of the Pearl River estuary, South China Sea, Environmental Research Letters, 6: 024016. https://doi.org/10.1088/1748-9326/6/2/024016

Cited by

  1. Airborne Hyperspectral Imagery availability to estimate inland water quality parameter vol.30, pp.1, 2014, https://doi.org/10.7780/kjrs.2014.30.1.6
  2. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea vol.187, pp.6, 2015, https://doi.org/10.1007/s10661-015-4616-1
  3. Spatial Distribution Mapping of Cyanobacteria in Daecheong Reservoir Using the Satellite Imagery vol.58, pp.2, 2016, https://doi.org/10.5389/KSAE.2016.58.2.053
  4. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques vol.16, pp.8, 2016, https://doi.org/10.3390/s16081298
  5. 인공구조물에 의한 하천 주변지역 지하수 시스템 변화의 수치 해석 vol.22, pp.3, 2012, https://doi.org/10.9720/kseg.2012.3.263
  6. RapidEye영상과 선형분광혼합화소분석 기법을 이용한 낙동강 유역의 클로로필-a 농도 추정 vol.30, pp.3, 2011, https://doi.org/10.15681/kswe.2014.30.3.329
  7. Spaceborne and airborne sensors in water quality assessment vol.37, pp.14, 2011, https://doi.org/10.1080/01431161.2016.1190477
  8. 고유분광특성을 이용한 남조류 원격 추정 모델 개선 vol.33, pp.2, 2011, https://doi.org/10.7780/kjrs.2017.33.2.1
  9. 하천녹조지도 작성을 위한 무인항공기 활용 가능성에 관한 연구 vol.31, pp.3, 2011, https://doi.org/10.11001/jksww.2017.31.3.197
  10. 무인항공영상을 활용한 낙동강 녹조 탐지 vol.12, pp.3, 2017, https://doi.org/10.13067/jkiecs.2017.12.3.457
  11. 무인항공기 및 다중분광센서를 이용한 하천부유쓰레기 탐지 기법 연구 vol.33, pp.5, 2011, https://doi.org/10.7780/kjrs.2017.33.5.1.7
  12. Evaluation of RapidEye data for mapping algal blooms in inland waters vol.40, pp.7, 2011, https://doi.org/10.1080/01431161.2018.1533657
  13. Bio-optical studies on chlorophyll-a concentration in Hooghly River, India vol.47, pp.p1, 2011, https://doi.org/10.1016/j.matpr.2021.05.034
  14. Hybrid Approach of Unmanned Aerial Vehicle and Unmanned Surface Vehicle for Assessment of Chlorophyll-a Imagery Using Spectral Indices in Stream, South Korea vol.13, pp.14, 2011, https://doi.org/10.3390/w13141930