• Title/Summary/Keyword: spatial geometry

Search Result 312, Processing Time 0.025 seconds

Proof of the three major problems of spatial geometry using sets and plane geometry (집합과 평면기하를 활용한 공간기하의 3대 문제 증명)

  • Do, Kang Su;Ryu, Hyun ki;Kim, Kwang Su
    • East Asian mathematical journal
    • /
    • v.39 no.4
    • /
    • pp.479-492
    • /
    • 2023
  • Although Euclidean plane geometry is implemented in the middle school course, there are three major problems in high school space geometry that can be intuitively taken for granted or misinterpreted as circular arguments. In order to solve this problem, this study proved three major problems using sets, Euclidean plane geometry, and parallel line postulates. This corresponds to a logical sequence and has mathematical and mathematical educational values. Furthermore, it will be possible to configure spatial geometry using sets, and by giving legitimacy to non-Euclidean spatial geometry, it will open the possibility of future research.

Reflections on the Elementary School Geometry Curriculum in the Netherlands -Based on the Realistic Mathematics Education- (네덜란드의 초등학교 기하 교육과정에 대한 개관 -현실적 수학교육을 중심으로-)

  • Chong, Yeong-Ok
    • School Mathematics
    • /
    • v.9 no.2
    • /
    • pp.197-222
    • /
    • 2007
  • The study aims to reflect the elementary school geometry education based on the Realistic Mathematics Education in the Netherlands in the light of the results from recent researches in geometry education and the direction of geometry standards for school mathematics of the National Council of Teachers of Mathematics in order to induce implications for improving korean geometry curriculum and textbook series. In order to attain these purposes, the present paper reflects the history of elementary school geometry education in the Netherlands, sketches the elementary school geometry education based on the Realistic Mathematics Education in the Netherlands by reflecting general goals of the mathematics education, the core goals for geometry strand of the Netherlands, and geometry and spatial orientation strand of Dutch Pluspunt textbook series for the elementary school more concretely. Under these reflections on the documents, it is analyzed what is the characteristics of geometry strand in the Netherlands as follows: emphasis on realistic spatial phenomenon, intuitive and informal approach, progressive approach from intuitive activity to spatial reasoning, intertwinement of mathematics strands and other disciplines, emphasis on interaction of the students, cyclical repetition of experiencing phase, explaining phases, and connecting phase. Finally, discussing points for improving our elementary school geometry curriculum and textbook series development are described as follows: introducing spatial orientation and emphasizing spatial visualization and spatial reasoning with respect to the instruction contents, considering balancing between approach stressing on grasping space and approach stressing on logical structure of geometry, intuitive approach, and integrating mathematics strands and other disciplines with respect to the instruction method.

  • PDF

Development of Spatial Geometry Cognition in 3-, 4-, and 5-Year-Old (3, 4, 5세 유아의 공간기하 인지 발달)

  • Kim, Bokyung;Yi, Soon Hyung
    • Human Ecology Research
    • /
    • v.55 no.2
    • /
    • pp.125-140
    • /
    • 2017
  • This study composed spatial cognition tasks within the system of geometric area to study children's spatial cognition development systematically. It surveyed children's execution of direction, rotation, symmetry, conjugation, and part/whole cognition tasks. A spatial geometry cognition task set (consisting of total 27 sub-tasks) was presented to 60 children (20 each in groups of 3-, 4-, and 5-year-old) in order to confirm how children's execution of spatial geometry cognition changed depending on children's age and sex as well as if the execution of the spatial geometry cognition showed a difference after each task area. As a result, the execution of the whole direction task and the part/whole task gradually increased between age 3 and age 5. The execution of the whole rotation task, whole symmetry task, and whole conjugation task rapidly increased between age 3 and age 4. Significant sexual difference did not appear in the execution of spatial geometry cognition tasks. The execution of the conjugation and part/whole task was high in each task area, and the execution of the direction, rotation, and symmetry task was relatively low. In addition, the difference of task execution appeared in the sub-tasks of direction, symmetry, and conjugation areas. This result suggests the theoretical discussion possibility of children's spatial geometry cognition development. In addition, the empirical results of this study can be applied to child education plans and activity compositions appropriate for child development.

Interoperability of OpenGIS Component and Spatial Analysis Component (개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동)

  • Min, Kyoung-Wook;Jang, In-Sung;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.49-62
    • /
    • 2001
  • Recently, component-based software has become main trends in designing and developing computer software products. This component-based software has advantage of the interoperability on distributed computing environment and the reusability of pre-developed components. Also, GIS is designed and implemented with this component-based methodology, called Open GIS Component. OGC(OpenGIS Consortium) have announced various implementation and design specification and topic in GIS. In GIS, Spatial analysis functions like network analysis, TIN analysis are very important function and basically, estimate system functionality and performance using this analysis methods. The simple feature geometry specification is announced by OGC to increase the full interoperability of various spatial data. This specification includes just geometry spatial data model. However, in GIS which manages spatial data, not only geometric data but also topological data and various analysis functions have been used. The performance of GIS depends on how this geometric and topological data is managed well and how various spatial analyses are executed efficiently. So it requires integrated spatial data model between geometry and topology and extended data model of topology for spatial analysis, in case network analysis and TIN analysis in open GIS component. In this paper, we design analysis component like network analysis component and TIN analysis component. To manage topological information for spatial analysis in open GIS component, we design extended data model of simple feature geometry for spatial analysis. In addition to, we design the overall system architecture of open GIS component contained this topology model for spatial analysis.

  • PDF

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Feature Data Model in GIS (지리사상을 위한 공간 데이터 모델)

  • Mu, Choe-Jin
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.103-103
    • /
    • 2004
  • With the emergency of geographic information systems (GIS), the traditional layer based data model can only contain the spatial geometry and thematic attributes of phenomena. In real world, geographic phenomena have not only spatial geometry and thematic attribute but the temporal situation and the relationship between each phenomenon. (omitted)

  • PDF

The Effect of Geometry Learning through Spatial Reasoning Activities on Mathematical Problem Solving Ability and Mathematical Attitude (공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과)

  • Shin, Keun-Mi;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.401-420
    • /
    • 2010
  • The purpose of this research is to find out effectiveness of geometry learning through spatial reasoning activities on mathematical problem solving ability and mathematical attitude. In order to proof this research problem, the controlled experiment was done on two groups of 6th graders in N elementary school; one group went through the geometry learning style through spatial reasoning activities, and the other group went through the general geometry learning style. As a result, the experimental group and the comparing group on mathematical problem solving ability have statistically meaningful difference. However, the experimental group and the comparing group have not statistically meaningful difference on mathematical attitude. But the mathematical attitude in the experimental group has improved clearly after all the process of experiment. With these results we came up with this conclusion. First, the geometry learning through spatial reasoning activities enhances the ability of analyzing, spatial sensibility and logical ability, which is effective in increasing the mathematical problem solving ability. Second, the geometry learning through spatial reasoning activities enhances confidence in problem solving and an interest in mathematics, which has a positive influence on the mathematical attitude.

  • PDF

The development of module for automatic extraction and database construction of BIM based shape-information reconstructed on spatial information (공간정보를 중심으로 재구성한 BIM 기반 형상정보의 자동추출 및 데이터베이스 구축 모듈 개발)

  • Choi, Jun-Woo;Kim, Shin;Song, Young-hak;Park, Kyung-Soon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.81-87
    • /
    • 2018
  • In this paper, in order to maximize the input process efficiency of the building energy simulation field, the authors developed the automatic extraction module of spatial information based BIM geometry information. Existing research or software extracts geometry information based on object information, but it can not be used in the field of energy simulation because it is inconsistent with the geometry information of the object constituting the thermal zone of the actual building model. Especially, IFC-based geometry information extraction module is needed to link with other architectural fields from the viewpoint of reuse of building information. The study method is as follows. (1) Grasp the category and attribute information to be extracted for energy simulation and Analyze the IFC structure based on spatial information (2) Design the algorithm for extracting and reprocessing information for energy simulation from IFC file (use programming language Phython) (3) Develop the module that generates a geometry information database based on spatial information using reprocessed information (4) Verify the accuracy of the development module. In this paper, the reprocessed information can be directly used for energy simulation and it can be widely used regardless of the kind of energy simulation software because it is provided in database format. Therefore, it is expected that the energy simulation process efficiency in actual practice can be maximized.

Development of a Spatial DSMS for Efficient Real-Time Processing of Spatial Sensor Data (공간 센서 데이타의 효율적인 실시간 처리를 위한공간 DSMS의 개발)

  • Kang, Hong-Koo;Park, Chi-Min;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 2007
  • Recently, the development of sensor devices has accelerated researches on advanced technologies like Wireless Sensor Networks. Moreover, spatial sensors using GPS lead to the era of the Ubiquitous Computing Environment which generally uses spatial information and non-spatial information together. In this new era, a real-time processing system for spatial sensor data is essential. In this reason, new data processing systems called DSMS(Data Stream Management System) are being developed by many researchers. However, since most of them do not support geometry types and spatial functions to process spatial sensor data, they are not suitable for the Ubiquitous Computing Environment. For these reasons, in this paper, we designed and implemented a spatial DSMS by extending STREAM which stands for STanford stREam datA Manager, to solve these problems. We added geometry types and spatial functions to STREAM in order to process spatial sensor data efficiently. In addition, we implemented a Spatial Object Manager to manage shared spatial objects within the system. Especially, we implemented the Simple Features Specification for SQL of OGC for interoperability and applied algorithms in GEOS to our system.

  • PDF

Geometrically and Topographically Consistent Map Conflation for Federal and Local Governments (Geometry 및 Topology측면에서 일관성을 유지한 방법을 이용한 연방과 지방정부의 공간데이터 융합)

  • Kang, Ho-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.804-818
    • /
    • 2004
  • As spatial data resources become more abundant, the potential for conflict among them increases. Those conflicts can exist between two or many spatial datasets covering the same area and categories. Therefore, it becomes increasingly important to be able to effectively relate these spatial data sources with others then create new spatial datasets with matching geometry and topology. One extensive spatial dataset is US Census Bureau's TIGER file, which includes census tracts, block groups, and blocks. At present, however, census maps often carry information that conflicts with municipally-maintained detailed spatial information. Therefore, in order to fully utilize census maps and their valuable demographic and economic information, the locational information of the census maps must be reconciled with the more accurate municipally-maintained reference maps and imagery. This paper formulates a conceptual framework and two map models of map conflation to make geometrically and topologically consistent source maps according to the reference maps. The first model is based on the cell model of map in which a map is a cell complex consisting of 0-cells, 1-cells, and 2-cells. The second map model is based on a different set of primitive objects that remain homeomorphic even after map generalization. A new hierarchical based map conflation is also presented to be incorporated with physical, logical, and mathematical boundary and to reduce the complexity and computational load. Map conflation principles with iteration are formulated and census maps are used as a conflation example. They consist of attribute embedding, find meaning node, cartographic 0-cell match, cartographic 1-cell match, and map transformation.