• 제목/요약/키워드: spatial diffusion

검색결과 311건 처리시간 0.024초

적응격자계를 이용한 경계층의 확산제어천이 예측 (Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid)

  • 조지룡
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

지하주차장 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구 (A NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE FROM FCV IN UNDERGROUND PARKING LOT)

  • 최종락;허남건;이은덕;이광범
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking lot was analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial changes of the hydrogen concentration as well as the flammable region in the parking lot were predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance in the parking lot to relieve the accumulation of the leaked hydrogen gas. The present numerical analysis can provide useful information such as the distribution of the leaked hydrogen concentration for safety of various hydrogen applications.

  • PDF

Measurement of Brownian motion of nanoparticles in suspension using a network-based PTV technique

  • Banerjee A.;Choi C. K.;Kihm K. D.;Takagi T.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.91-110
    • /
    • 2004
  • A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.

  • PDF

Uniformly Convergent Numerical Method for Singularly Perturbed Convection-Diffusion Problems

  • Turuna, Derartu Ayansa;Woldaregay, Mesfin Mekuria;Duressa, Gemechis File
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.629-645
    • /
    • 2020
  • A uniformly convergent numerical method is developed for solving singularly perturbed 1-D parabolic convection-diffusion problems. The developed method applies a non-standard finite difference method for the spatial derivative discretization and uses the implicit Runge-Kutta method for the semi-discrete scheme. The convergence of the method is analyzed, and it is shown to be first order convergent. To validate the applicability of the proposed method two model examples are considered and solved for different perturbation parameters and mesh sizes. The numerical and experimental results agree well with the theoretical findings.

Sensitivity Analysis of the Galerkin Finite Element Method Neutron Diffusion Solver to the Shape of the Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.29-42
    • /
    • 2017
  • The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • 제46권4호
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

  • Yan, Xiang-Ping;Zhang, Cun-Hua
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.715-731
    • /
    • 2012
  • This paper considers the stability of positive steady-state solutions bifurcating from the trivial solution in a delayed Lotka-Volterra two-species predator-prey diffusion system with a discrete delay and subject to the homogeneous Dirichlet boundary conditions on a general bounded open spatial domain with smooth boundary. The existence, uniqueness and asymptotic expressions of small positive steady-sate solutions bifurcating from the trivial solution are given by using the implicit function theorem. By regarding the time delay as the bifurcation parameter and analyzing in detail the eigenvalue problems of system at the positive steady-state solutions, the asymptotic stability of bifurcating steady-state solutions is studied. It is demonstrated that the bifurcating steady-state solutions are asymptotically stable when the delay is less than a certain critical value and is unstable when the delay is greater than this critical value and the system under consideration can undergo a Hopf bifurcation at the bifurcating steady-state solutions when the delay crosses through a sequence of critical values.

COMPUTATIONAL METHOD FOR SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION EQUATIONS WITH ROBIN BOUNDARY CONDITIONS

  • GELU, FASIKA WONDIMU;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.25-45
    • /
    • 2022
  • In this study, the non-standard finite difference method for the numerical solution of singularly perturbed parabolic reaction-diffusion subject to Robin boundary conditions has presented. To discretize temporal and spatial variables, we use the implicit Euler and non-standard finite difference method on a uniform mesh, respectively. We proved that the proposed scheme shows uniform convergence in time with first-order and in space with second-order irrespective of the perturbation parameter. We compute three numerical examples to confirm the theoretical findings.

HIGHER ORDER GALERKIN FINITE ELEMENT METHOD FOR THE GENERALIZED DIFFUSION PDE WITH DELAY

  • LUBO, GEMEDA TOLESSA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.603-618
    • /
    • 2022
  • In this paper, a numerical solution of the generalized diffusion equation with a delay has been obtained by a numerical technique based on the Galerkin finite element method by applying the cubic B-spline basis functions. The time discretization process is carried out using the forward Euler method. The numerical scheme is required to preserve the delay-independent asymptotic stability with an additional restriction on time and spatial step sizes. Both the theoretical and computational rates of convergence of the numerical method have been examined and found to be in agreement. As it can be observed from the numerical results given in tables and graphs, the proposed method approximates the exact solution very well. The accuracy of the numerical scheme is confirmed by computing L2 and L error norms.

TBSS(Tract-Based Spatial Statics)를 이용한 음주 시작연령에 따른 해마 영역 부위의 신경섬유의 비등방도 측정 (Measurement of the Anisotropy of Nerve Fibers in the Hippocampal Region according to the Drinking beginning Age using TBSS(Tract-Based Spatial Statics))

  • 곽종혁;김경립
    • 한국방사선학회논문지
    • /
    • 제14권6호
    • /
    • pp.781-790
    • /
    • 2020
  • 음주 시작연령을 변수로 하여 30세 이상 50세 이하의 중장년층 남성을 대상으로 뇌 백질과 회백질의 손상 유무를 파악할 수 있는 확산텐서영상을 검사하여 영상을 획득한 후 Tract-Based Spatial Statics(TBSS)방법으로 뇌 회백질 부위의 해마 영역 부위 신경섬유로의 비등방도 FA(fractional anisotropy)값을 측정 분석한 결과 모든 영역에서 음주 시작연령이 낮을수록 비등방성 측정값이 낮게 관찰되었지만 FA 값은 통계적으로 유의하였다. 본 연구에서 측정한 FA 결과 값이 나타내는 연구결과는 즉, 음주 시작연령이 빠를수록 뇌 회백질의 해마 영역의 모든 신경학적이고 해부학적인 뇌 영역의 세부적인 형태학적 변화와 신경섬유조직에 심각하게 영향을 준다고 할 수 있으며 신경섬유로를 위해 및 손상시키고 알코올과 관련된 기능적 형태학적 변이에 영향을 끼친다고 할 수 있다.