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COMPUTATIONAL METHOD FOR SINGULARLY
PERTURBED PARABOLIC REACTION-DIFFUSION

EQUATIONS WITH ROBIN BOUNDARY CONDITIONS

FASIKA WONDIMU GELU∗ AND GEMECHIS FILE DURESSA

Abstract. In this study, the non-standard finite difference method for
the numerical solution of singularly perturbed parabolic reaction-diffusion
subject to Robin boundary conditions has presented. To discretize tempo-
ral and spatial variables, we use the implicit Euler and non-standard finite
difference method on a uniform mesh, respectively. We proved that the
proposed scheme shows uniform convergence in time with first-order and
in space with second-order irrespective of the perturbation parameter. We
compute three numerical examples to confirm the theoretical findings.
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1. Introduction

A singularly perturbed differential equation is a differential equation in which a
small positive parameter ε(0 < ε << 1) multiplied the highest order derivative
term and the parameter ε is known as the perturbation parameter. The solution
to such problems is characterized by layer regions which are narrow parts of the
domain over which the solution undergoes abrupt changes. A boundary layer
is defined as a thin layer of rapid change that occurs on a tiny interval around
the boundary. If the characteristics of the reduced problem are parallel to the
boundary when ε → 0, then a parabolic boundary layer occur [6]. It is well-
known fact that the solution of singular perturbation problems exhibits a multi-
scale character (non-uniform behaviour), that is, there are thin transition layer(s)
where the solution varies rapidly or jumps abruptly in some parts of the domain,
which is known as boundary layer (inner) region while away from the layer(s) the
solution behaves regularly and varies slowly, which is commonly known as outer
region. In solving these types of problems using classical numerical methods
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on a uniform mesh, large oscillations may arise and pollute the solutions when
the perturbation parameter becomes small in entire domain of interest due to
the boundary layer behaviour. There is a vast literature about non-classical
numerical methods. In the context of finite difference methods, we can group
these methods into two. The first is fitted mesh finite difference methods and
the second is fitted operator finite difference methods. Both types of methods
have been used in the literature to solve singularly perturbed problems. The
analysis of the fitted operator finite difference method is simpler due to the fact
that it is based on a uniform mesh whereas fitted mesh finite difference methods
are based on non-uniform meshes and its analysis is somewhat complicated than
operator methods.

In this study, we consider the following class of singularly perturbed second-
order linear parabolic partial differential equation of reaction-diffusion type

ut + Lεu = f(x, t), (x, t) ∈ Ω = ΩNx × ΩMt = (0, 1)× (0, T ], (1)
subject to the initial condition

u(x, 0) = ϕb(x), 0 ≤ x ≤ 1, (2)
and boundary conditions of Robin type{

βlu(0, t) ≡
(
u−

√
ε∂u∂x

)
(0, t) = ϕl(t), 0 ≤ t ≤ T,

βru(1, t) ≡
(
u+

√
ε∂u∂x

)
(1, t) = ϕr(t), 0 ≤ t ≤ T.

(3)

The spatial differential operator is defined as
Lε = −εuxx + a(x, t),

where ε(0 < ε << 1) is perturbation parameter. The coefficient a(x, t), the
source function f(x, t) and the boundary functions ϕb(x), ϕl(t) and ϕr(t) are
sufficiently smooth and bounded. The reaction term a(x, t) is assumed to satisfy
the following condition a(x, t) ≥ α > 0, (x, t) ∈ Ω̄. The solution u of (1)–(3) is
expected to exhibit twin layers of width O(

√
ε) at x = 0 and x = 1.

Singularly perturbed problems of type (1) with initial-Dirichlet boundary
conditions have been studied extensively in the literature using different numer-
ical methods, to mention a few of recent studied (see [1]–[7] and the references
therein). However, only few studies of such problems subject to Robin boundary
conditions are there, for example, see [8]–[9]. Recently, authors in [10] studied
singularly perturbed time delay parabolic reaction-diffusion equations subject to
Robin boundary conditions. Authors in [11] studied singularly perturbed time
delay convection-diffusion equation. Some robust fitted operator methods are
developed in the literature for singularly perturbed problems, see [12]–[14]. In-
spired by the simplicity of analysis on a uniform mesh and as far as the authors
knowledge is concerned, the idea of non-standard finite difference methods have
not been implemented for the problems of the type (1)–(3) so far. Our aim in
this work is to design one such method. The time direction is discretized by
the Euler method, both the spatial direction and Robin boundary conditions
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are discretized by the non-standard finite difference method. We provide the
convergence analysis of the fully discrete problem and prove that the method
is parameter-uniform. Three numerical experiments are conducted in order to
validate our theoretical results.

The remaining parts of this study are outlined as follows. Section 2 is devoted
to some properties of continuous problem and its bounds of derivatives. In
section 3, we fully discretize the problem and discuss about the parameter-
uniform convergence analysis of the fully discrete problem. In section 4, three
numerical examples are solved using the present method. The paper ends with
a brief conclusion in Section 5.

2. Properties of Continuous Problem

When studying the numerical aspects of singularly perturbed problems, the an-
alytical counterpart plays a significant role. Here, we present the bound for
the analytical solution of the continuous problem (1)–(3), which can be used
for finding the bounds of the discrete solution and its derivatives. Setting the
parameter value ε = 0, the reduced problem corresponding to (1)–(3) is{

∂u0

∂t (x, t) + a(x, t)u0(x, t) = f(x, t), (x, t) ∈ Ω,

u(x, 0) = ϕb(x), 0 ≤ x ≤ 1.
(4)

Since the reduced problem (4) will not make use the two boundary conditions,
the solution of problem in (1)–(3) will have both left and right boundary layers.
The characteristics curve of the reduced problem in equation (4) is the vertical
lines x= constant, which implies that boundary layers arising in the solution are
of parabolic type. The existence and uniqueness for a solution of (1)–(3) can be
established under the assumption that the data are Hölder continuous and also
satisfy an appropriate compatibility conditions at the corner points (0, 0) and
(1, 0). We impose the compatibility conditions

ϕb(0) = βl(0), ϕb(1) = βr(1),

∂ϕl(0, 0)

∂t
− ε

∂2ϕ(0, 0)

∂x2
+ a(0, 0)ϕ(0, 0) = f(0, 0),

∂ϕr(1, 0)

∂t
− ε

∂2ϕ(1, 0)

∂x2
+ a(1, 0)ϕ(1, 0) = f(1, 0).

The boundary functions ϕl, ϕr ∈ Ck([0, T ]), ϕb ∈ C1,k([0, 1]× [0, T ]) are said to
satisfy the kth order compatibility condition at the initial function if

∂k

∂tk

(
ϕb −

√
ε∂ϕb

∂x

)
(0, 0) = dkϕl(0)

∂tk
,

∂k

∂tk

(
ϕb +

√
ε∂ϕb

∂x

)
(1, 0) = dkϕr(1)

∂tk
.

(5)

Under the above compatibility conditions, it is clear that the solution of problem
in (1)–(3) will have a unique solution which exhibits parabolic boundary layers
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at x = 0 and x = 1. The problem admits the following continuous maximum
principle which ensures the stability of the solution for the problem in (1)–(3).

Lemma 2.1. Assume that a ∈ C(0,0)(Ω̄) and let ψ ∈ U∗ = C(2,1)(Ω)∩C(1,0)(Ω∗)∩
C(0,0)(Ω̄) be a sufficiently smooth function defined on Ω such that Lεψ(x, t) ≥
0, (x, t) ∈ Ω, βlψ(x, t) ≥ 0, (x, t) ∈ {0}×(0, T ], βrψ(x, t) ≥ 0, (x, t) ∈ {1}×(0, T ]
and ψ(x, t) ≥ 0, (x, t) ∈ [0, 1]× (0, T ], where Ω∗ = Ω∪{0}× (0, T ]∪{1}× (0, T ].
Then, ψ(x, t) ≥ 0, for all (x, t) ∈ Ω̄.

Proof. Suppose the arbitrary function ψ takes its minimum value at the point
(x∗, t∗) ∈ Ω̄ such that ψ(x∗, t∗) = min

(x,t)∈Ω̄
ψ(x, t) and assume that ψ(x∗, t∗) < 0.

Case(i). For (x∗, t∗) ∈ {0}× (0, T ], we have ∂ψ
∂x (x

∗, t∗) ≥ 0. Hence, βlψ(x∗, t∗) =

ψ(x∗, t∗)−
√
ε
∂ψ

∂x
(x∗, t∗) < 0, which is a contradiction.

Case(ii). For (x∗, t∗) ∈ {1}×(0, T ], we have ∂ψ
∂x (x

∗, t∗) ≤ 0. Hence, βrψ(x∗, t∗) =

ψ(x∗, t∗)−
√
ε
∂ψ

∂x
(x∗, t∗) < 0 and for t∗ = 0, ψ(x∗, 0) < 0, which is a contradic-

tion. This implies that (x∗, t∗) is not the boundary.
Case(iii). For (x∗, t∗) ∈ Ω, as it attains minimum at (x∗, t∗), we have ∂ψ∂t (x∗, t∗) ≤
0 and ∂2ψ

∂x2 (x
∗, t∗) ≥ 0. Hence,

Lεψ(x
∗, t∗) =

∂ψ

∂t
(x∗, t∗)− ε

∂2ψ

∂x2
(x∗, t∗) + a(x∗, t∗)ψ(x∗, t∗) < 0,

which is a contradiction to the assumption that Lεψ(x, t) ≥ 0, ∀(x, t) ∈ Ω. It
follows that ψ(x∗, t∗) ≥ and thus ψ(x, t) ≥ 0, ∀(x, t) ∈ Ω̄. �

The following Lemma proves the stability estimate to obtain unique solution.

Lemma 2.2. Let u(x, t) ∈ C(2,1)(Ω̄) be the solution to continuous problem in
(1)–(3) satisfying the bound

|u(x, t)| ≤ max
{
|ϕb(x)|, |βl(0, t)|, |βr(1, t)|

}
+ α−1∥f∥.

Proof. To proof this lemma, we define two smooth barrier functions Θ± as
Θ±(x, t) = max

{
|ϕb(x)|, |βl(0, t)|, |βr(1, t)|

}
+ α−1∥f∥ ± u(x, t).

Now, we evaluate the above defined barrier functions at the initial and boundary
conditions, respectively as follows. At t = 0, we have

Θ±(x, 0) = max
{
|ϕb(x)|, |βl(0)|, |βr(0)|

}
+ α−1∥f∥ ± u(x, 0),

= max
{
|ϕb(x)|, |βl(0)|, |βr(0)|

}
+ α−1∥f∥ ± ϕb(x) ≥ 0.

At x = 0, we have
Θ±(0, t) = max

{
|ϕb(0)|, |βl(0, t)|, |βr(0, t)|

}
+ α−1∥f∥ ± u(0, t). (6)

From equation (6), we deduce the following
u(0, t) = ±Θ±(0, t)∓max

{
|ϕb(0)|, |βl(0, t)|, |βr(0, t)|

}
+ α−1∥f∥. (7)
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ux(0, t) = ±Θ±
x (0, t)∓ |ϕ′b(0)|. (8)

Using equations (7) and (8) in the left boundary condition and rearranged gives
(Θ± −

√
εΘ±

x )(0, t) = ±ϕl(0, t) +
[
max

{
|ϕb(0)|, |βl(0, t)|, |βr(0, t)|

}
+α−1∥f∥

]
−

√
ε|ϕ′b(0)| ≥ 0,

for ϕ′b(0) = 0; max
{
|ϕb(0)|, |βl(0, t)|, |βr(0, t)|

}
+ α−1∥f∥ ± ϕl(0, t) ≥ 0.

At x = 1, we have
Θ±(1, t) = max

{
|ϕb(1)|, |βl(1, t)|, |βr(1, t)|

}
+ α−1∥f∥ ± u(1, t). (9)

From equation (9), we deduce the following
u(1, t) = ±Θ±(1, t)∓max

{
|ϕb(1)|, |βl(1, t)|, |βr(1, t)|

}
+ α−1∥f∥. (10)

ux(1, t) = ±Θ±
x (1, t)∓ |ϕ′b(1)|. (11)

Using equations (10) and (11) in the right boundary condition gives
(Θ± +

√
εΘ±

x )(1, t) = ±ϕl(1, t) + max
{
|ϕb(1)|, |βl(1, t)|, |βr(1, t)|

}
+ α−1∥f∥

+
√
ε|ϕ′b(1)| ≥ 0,

for ϕ′b(1) = 0; max
{
|ϕb(1)|, |βl(1, t)|, |βr(1, t)|

}
+α−1∥f∥±ϕl(1, t) ≥ 0. Now, on

the domain Ω, we have
LΘ±(x, t) = Θ±

t (x, t)− εΘ±
xx(x, t) + a(x, t)Θ±(x, t),

= max{β′
l(0, t), β

′
r(1, t)} ± ut(x, t)− ε(|ϕ′′b (x)| ± uxx(x, t))

+ a(x, t)
([

max
{
|ϕb(x)|, |βl(0, t)|, |βr(1, t)|

}
+

1

α
∥f∥

]
± u(x, t)

)
,

= max{β′
l(0, t), β

′
r(1, t)} − ε|ϕ′′b (x)|

+ a(x, t)max
{
|ϕb(x)|, |βl(0, t)|, |βr(1, t)|

}
+ α−1∥f∥ ± Lu(x, t),

= ±f(x, t) + max{β′
l(0, t), β

′
r(1, t)} − ε|ϕ′′b (x)|

+ a(x, t)max
{
|ϕb(x)|, |βl(0, t)|, |βr(1, t)|

}
+ α−1∥f∥,

= ±f(x, t) + α−1a(x, t)∥f∥+ a(x, t)×max
{
|ϕb(x)|, |βl(0, t)|, |βr(1, t)|

}
− ε|ϕ′′b (x)|+max{β′

l(0, t), β
′
r(1, t)} ≥ 0,

where ϕ′′b (x) = 0, ∀x ∈ [0, 1] and a(x, t) ≥ α. From continuous maximum princi-
ple, it follows that Θ±(x, t) ≥ 0, ∀(x, t) ∈ Ω̄. �

The next theorem states the classical bounds on the solution and its derivatives.

Theorem 2.3. Let functions a, f ∈ C(2+α,1+α/2)(Ω̄), ϕl, ϕr ∈ C
3+α
2 [(0, T )], ϕb ∈

C(4+α,2+α/2)([0, 1]× [0, T ]), α ∈ (0, 1). Assume that the compatibility conditions
given in (5) for k = 0, 1, 2 are fulfilled. Then, the problem has a unique solution
and the derivatives of the solution u satisfy the bound∥∥∥∥ ∂i+ju∂xi∂tj

∥∥∥∥
Ω̄

≤ Cε−i/2, i, j ≥ 0, 0 ≤ i+ 2j ≤ 4,



30 Fasika Wondimu Gelu and Gemechis File Duressa

where the constant C is independent of ε.

The non-classical bounds in singular and regular components and its derivatives
are established in the following theorem.

Theorem 2.4. Let functions a, f ∈ C(4+α,2+α/2)(Ω̄), ϕl, ϕr ∈ C
5+α
2 [(0, T )], ϕb ∈

C(6+α,3+α/2)([0, 1] × [0, T ]), α ∈ (0, 1). Under the smoothness and compatibility
conditions, we have the bounds for i, j ≥ 0, 0 ≤ i+ 2j ≤ 4∥∥∥∥∂i+jv(x, t)∂xi∂tj

∥∥∥∥ ≤ C(1 + ε1−i/2),∣∣∣∣∂i+jwl∂xi∂tj

∣∣∣∣ ≤ Cε−i/2 exp

(
−x√
ε

)
,

∣∣∣∣∂i+jwr∂xi∂tj

∣∣∣∣ ≤ Cε−i/2 exp

(
−(1− x)√

ε

)
.

3. Fully Discretized Problem

In this section, we first develop exact scheme which will then be used to derive
a non-standard finite difference scheme. Micken’s presented rules for develop-
ing non-standard finite difference method for different problem types [15]. To
develop a discrete scheme using Micken’s rule, the denominator function for the
second order derivative must be expressed in terms of more complicated func-
tions of step sizes than those used in the standard finite difference procedures.
This complicated function constitutes a general property of the schemes, which
is useful while designing reliable schemes for such problems. In line to this, we
need to derive a non-standard finite difference method which captures the layer
behavior of the problem on a uniform mesh. Mickens in [15] and [16] gave a
novel approach of non-standard finite difference method and the basic idea of
this method is to replace the denominator function h2 of the second order de-
rivative with suitable function in the differential equation, which comes under
the category of fitted operator finite difference method. On the spatial domain
[0, 1], we introduce the equidistant meshes with uniform mesh length such that

ΩNx = {x0 = 0, xi = ih, i = 1(1)N, xN = 1, h =
1

N
},

where h is the step size and N is the number of mesh points in the spatial
direction. Similarly, we divide the time interval [0, T ] into M equal intervals
with uniform step size ∆t defined by

ΩMt = {t0 = 0, tn = n∆t, n = 1(1)M − 1, tM = T, ∆t =
T

M
},

where M denotes the number of mesh points in time direction. We denote
the approximation of u(xi, tn) by Uni . According to [15], the concept of sub-
equations is the major tool to derive the denominator function for a partial
differential equation. Thus, from (1) we take the homogeneous form of constant
coefficient sub-equation in spatial direction while assuming t as continuous

−ε d
2U

dx2
(xi, t) + (aU)(xi, t) = 0, (12)
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and design the non-standard finite difference scheme for this sub-equation. By
discretizing (12) in space direction only, from the theory of non-standard finite
difference methods, we have

−ε Ui+1(t)− 2Ui(t) + Ui−1(t)

γ2i
+ ai(t)Ui(t) = 0, (13)

Equation (13) has two linearly independent analytical solutions, namely, exp(−ρxi)
and exp(ρxi), where ρi(t) =

√
ai(t)
ε . Following Micken’s in [15], we construct a

difference equation for equation (13)∣∣∣∣∣∣
Ui−1 U1,i−1 U2,i−1

Ui U1,i U2,i
Ui+1 U1,i+1 U2,i+1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
Ui−1 exp(−ρxi−1) exp(ρxi−1)
Ui exp(−ρxi) exp(ρxi)
Ui+1 exp(−ρxi+1) exp(ρxi+1)

∣∣∣∣∣∣ = 0. (14)

Simplifying the above determinant by column expansion, we get

Ui−1 − 2 cosh(ρh)Ui + Ui+1 = 0, (15)

which is the exact scheme for equation (13) in the sense that equation (13) has
the same general solution Ui = A exp(−ρxi) + B exp(ρxi) as (15), see [17], [18]
and [19]. Simplifying equation (15) by hyperbolic identity and using it into
equation (13), we obtain

−ε
4 sinh2(ρi(t)

h
2 )

γ2i
Ui(t) + ai(t)Ui(t) = 0, (16)

Simplification of equation (16) gives us the non-standard finite difference scheme

−ε Ui+1(t)− 2Ui(t) + Ui−1(t)

4ε
ai(t)

sinh2
(√ai(t)

ε
h
2

) + ai(t)Ui(t) = 0, (17)

From equation (17), we observe that the classical denominator h2 was replaced by
the complicated denominator function 4ε

ρ sinh
2
(√

ρ
ε
h
2

)
implying that the present

method is non-standard finite difference method. For varying coefficient func-
tion, the denominator function becomes

4ε

ρi
sinh2

(√ρi
ε

h

2

)
.

Substituting equation (17) into problem (1), we get the fully-discrete scheme of
the form

Un+1
i − Uni

∆t
− ε

(
Un+1
i−1 − 2Un+1

i + Un+1
i+1

γ2i (ε, h)

)
+ an+1

i Un+1
i = fn+1

i , (18)
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for i = 1, 2, · · · , N−1, n = 1, · · · ,M.We use forward and backward non-standard
finite differences to approximate the first derivative in the left and right bound-
ary conditions, respectively as given below. Thus, we have the following semi-
discrete initial and boundary conditions

U0
i = ϕb(xi), xi ∈ Ω̄,

Un+1
0 −

√
ε
(Un+1

1 − Un+1
0

γ0

)
= ϕl(tn+1), t ∈ [0, T ],

Un+1
N +

√
ε
(Un+1

N − Un+1
N−1

γN

)
= ϕr(tn+1), t ∈ [0, T ].

(19)

From the theory of non-standard finite difference methods, we have the following
denominator functions at the two boundaries and interior points

γ0 =
√
ε
(
e

h√
ε − 1

)
, i = 0,

γi =
2

ρn+1
i

sinh
(
ρn+1
i

h

2

)
, where ρn+1

i =

√
an+1
i

ε
, i = 1, 2, · · · , N − 1

γN =
√
ε
(
1− e

−h√
ε
)
, i = N.

(20)

The discrete problem in equation (18) and the discrete conditions in equation
(19) together with the denominator functions in equation (20) can be written in
matrix form as

AU = F, i = 1, 2, ..., N − 1, n = 0, ...,M, (21)

where U and F are column vectors of N + 1 and the matrix A is a tri-diagonal
matrix of (N + 1)× (N + 1). The entries of the coefficient matrix A is given by

A0,0 = 1 +
√
ε

γ0
, A0,1 = −

√
ε

γ0
,

Ai,i−1 = − ε
γ2
i
, i = 1, ..., N − 1,

Ai,i=
2ε
γ2
i
+ 1

∆t + an+1
i , i = 1, ..., N − 1,

Ai,i+1 = − ε
γ2
i
, i = 1, ..., N − 1,

AN ,N−1 = −
√
ε

γN
, AN ,N = 1 +

√
ε

γN
.

(22)

The entries of column vectors F and U are given as follows
Fn+1
0 = fn+1

0 +
Un

0

∆t + ϕl(tn+1),

Fn+1
i = fn+1

i +
Un

i

∆t , i = 1(1)N − 1,

Fn+1
N = fn+1

N +
Un

N

∆t + ϕr(tn+1),

U = [U0, U1, · · · , UN ]T .

(23)

3.1. Stability Analysis for Discrete Problem. Next, we prove some useful
attributes the discrete problem. The discrete operator defined in equation (18)
satisfies the following discrete maximum principle.
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Theorem 3.1. Assume that LN,M be discrete operator given in equation (18)
and Θni be any mesh function satisfying LN,MΘni ≤ 0 for all (i, n) ∈ ΩN,M ,
initial condition Θ0

i ≥ 0, 0 ≤ i ≤ N and boundary conditions βl(0, tn) ≡ Θn0 −√
ε(Θx)

n
0 ≥ 0, βr(N, tn) ≡ ΘnN +

√
ε(Θx)

n
N ≥ 0. If LN,MΘnn ≤ 0 in ΩN,M , then

Θnn ≥ 0 in Ω̄N,M .

Proof. Let s and p be indices such that Θps = min
∀(i,n)

Θni for Θni ∈ Ω̄N,M . Assume

that Θps < 0. Then, it is easy to see that (s, p) ∈ {1, · · · , N − 1} × {1, · · · ,M},
because otherwise Θps ≥ 0. It follows that Θp+1

s+1 − Θp+1
s > 0,Θp+1

s−1 − Θp+1
s > 0

and Θp+1
s −Θps > 0. Thus, now

LN,MΘp+1
s =

1

∆t
Θp+1
s − ε

γ2s
(Θp+1

s+1 − 2Θp+1
s +Θp+1

s−1) + ap+1
s Θp+1

s ,

=
1

∆t
Θp+1
s − ε

γ2s
[(Θp+1

s+1 −Θp+1
s )− (Θp+1

s −Θp+1
s−1)] + ap+1

s Θp+1
s ,

< 0,

The discrete boundary conditions becomes

Θp+1
0 −

√
ε

γ0
(Θp+1

1 −Θp+1
0 ) < 0 and Θp+1

N +

√
ε

γN
(Θp+1

N −Θp+1
N−1) < 0,

which is a contradiction. Hence, the assumption Θp+1
s < 0, ∀(s, p) is wrong.

Thus, Θp+1
s > 0 implies that Θmn ≥ 0 in Ω̄N,M . �

Now, we will prove the uniform stability analysis of the discrete problem.

Lemma 3.2. Let Un+1
i be the solution of discrete problem equation (18) satis-

fying the following bound

∥Un+1
i ∥ ≤ α−1 max

∀(i,n)
|LN,MUn+1

i |+ max
∀(i,n)

{|(ϕb)0i |,max{(ϕl)n+1
i , (ϕr)

n+1
i }}.

Proof. Let Z = α−1 max
∀(i,n)

|LN,MUn+1
i | + max

∀(i,n)
{|(ϕb)0i |,max{(ϕl)n+1

i , (ϕr)
n+1
i }}

and define the two barrier functions (Ψ±)n+1
i by (Ψ±)n+1

i = Z ± Un+1
i . At the

initial condition, we get (Ψ±)0i = Z ± U0
i = Z ± (ϕb)

0
i ≥ 0. At the boundary

points, we have (Ψ±)n+1
0 = Z ± Un+1

0 = Z ± (ϕl)
n+1
i ≥ 0, and (Ψ±)n+1

N =

Z±Un+1
N = Z± (ϕr)

n+1
i ≥ 0. On the discretized domain 1 ≤ i ≤ N −1, we have

LN,M (Ψ±)n+1
i ≡ 1

∆t

(
(Z ± Un+1

i )− (Z ± Uni )

)
− ε

γ2i

(
(Z ± Un+1

i−1 )− 2(Z ± Un+1
i ) + (Z ± Un+1

i+1 )

)
+ an+1

i (Z ± Un+1
i ),

= an+1
i Z ± LN,MUn+1

i ,

= ±fn+1
i + an+1

i Z ≥ 0,
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where an+1
i ≥ α and from discrete maximum principle, we get (Ψ±)n+1

i ≥
0, ∀(xi, tn) ∈ Ω̄N,M . �

3.2. Convergence Analysis for Discrete Problem. We use the following
lemma to prove the uniform convergence analysis of the discrete problem in (18).

Lemma 3.3. For all positive integers j on a fixed mesh, we have

lim
ε→ 0

max
1<i<N−1

exp(−Cxi√
ε
)

ε
j
2

= 0 and lim
ε→ 0

max
1<i<N−1

exp(−C(1−xi)√
ε

)

ε
j
2

= 0,

where xi = ih, h = 1
N , ∀i = 1, ..., N − 1.

Proof. We transform the domain [0,1] into the discrete domain 0 = x0 < · · · <
xN = 1. The interior grid points satisfy the inequalities

max
1<i<N−1

exp(−Cxi√
ε
)

ε
j
2

≤
exp(−Cx1√

ε
)

ε
j
2

=
exp(−Ch√

ε
)

ε
j
2

,

and

max
1<i<N−1

exp(−C(1−xn)√
ε

)

ε
j
2

≤
exp(−C(1−xN−1)√

ε
)

ε
j
2

=
exp(−Ch√

ε
)

ε
j
2

.

Since x1 = h, 1− xN−1 = 1− (N − 1)h = 1−Nh+ h = h, applying L’Hospital’s
rule repeatedly results in

lim
ε→ 0

exp(−Ch√
ε
)

ε
j
2

= lim
p= 1√

ε
→ ∞

pj

exp(Chp)
= lim
p→∞

j!

(Ch)j exp(Chp)
= 0.

Hence, the proof is completed. �

Now, we analyze convergence analysis of the proposed method. The truncation
error of the proposed method is given by

LN,M (Un+1
i − un+1

i ) = fn+1
i − LN,Mun+1

i ,

= Lun+1
i − LN,Mun+1

i ,

= (ut)
n+1
i − ε(uxx)

n+1
i + an+1

i un+1
i ,

−
[
un+1
i − uni

∆t
− ε

(
un+1
i+1 − 2un+1

i + un+1
i−1

γ2i

)
+ an+1

i un+1
i

]
,

= (ut)
n+1
i − ε(uxx)

n+1
i −

[
un+1
i − uni

∆t

]
+ ε

(
un+1
i+1 − 2un+1

i + un+1
i−1

γ2i

)
.
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Taylor’s expansions of the terms un+1
i , un+1

i+1 and un+1
i−1 are give as following

un+1
i+1 = un+1

i + h(ux)
n+1
i +

h2

2
(uxx)

n+1
i +

h3

6
(uxxx)

n+1
i +

h4

24
(uxxxx)

n+1
i + · · ·

un+1
i−1 = un+1

i − h(ux)
n+1
i +

h2

2
(uxx)

n+1
i − h3

6
(uxxx)

n+1
i +

h4

24
(uxxxx)

n+1
i + · · ·

un+1
i = uni +∆t(ut)

n
i +

∆t2

2
(utt)

n
i + · · ·

Adding the first two equations in the above Taylor’s expansion, we have

un+1
i+1 − 2un+1

i + un+1
i−1 = h2(uxx)

n+1
i +

h4

12
(uxxxx)

n+1
i + · · ·

From the last equation of Taylor’s expansion, we obtain
un+1
i − uni

∆t
= (ut)

n
i +

∆t

2
(utt)

n
i + · · ·

Using the truncated values of the above results, we have

LN,M (Un+1
i − un+1

i ) = (ut)
n+1
i − ε(uxx)

n+1
i −

[
(ut)

n
i +

∆t

2
(utt)

n
i

]
+
ε

γ2i

(
h2(uxx)

n+1
i +

h4

12
(uxxxx)

n+1
i

)
.

A truncated Taylor’s expansion of the denominator function 1
γ2
i
reads [20]

1

γ2i
=
ρ2i
4

(
4

ρ2ih
2
− 1

3
+
ρ2ih

2

60

)
.

Substituting this into the above expression and rearranging gives

LN,M (Un+1
i − un+1

i ) =

(
ε

12
(uxxxx)

n+1
i − ε

ρ2i
12

(uxx)
n+1
i

)
h2 −

(
ε
ρ2i
144

(uxxxx)
n+1
i

− ε
ρ4i
240

(uxx)
n+1
i

)
h4 +

(
ε
ρ4i

2880
(uxxxx)

n+1
i

)
h6 − (utt)

n
i

2
∆t.

Applying Theorem (2.4) for the bounds on the derivatives and Lemma (3.3) on
the above expression gives

LN,M (Un+1
i −un+1

i ) =

(
ε

12
−ερ

2
i

12

)
h2−

(
ε
ρ2i
144

−ε ρ
4
i

240

)
h4+

(
ε
ρ4i

2880

)
h6− (utt)

n
i

2
∆t.

Taking maximum on both sides of the above expression and using the value of
ρ, we have∣∣LN,M (Un+1

i − un+1
i )

∣∣ ≤ C1h
2 + C2h

4 + C3h
6 + 0.5

∣∣(utt)ni ∣∣∆t.
Applying the relation h2 > h4 > h6, the discrete problem satisfy the bound

∥LN,M (Un+1
i − un+1

i )∥ ≤ C(h2 +∆t).
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Using Lemma (3.2), we get the result
∥(Un+1

i − un+1
i )∥ ≤ C(h2 +∆t).

where C is a constant independent of ε, N and ∆t.
The error bound at the left boundary x0 is estimated as follows

Un+1
0 − un+1

0 = un+1
0 −

√
ε(ux)

n+1
0 − ϕn+1

l −
[
un+1
0 −

√
ε

γ0
(un+1

1 − un+1
0 )− ϕn+1

l

]
.

Taylor series expansion of the term un+1
1 and the denominator function γ0 yields

Un+1
0 − un+1

0 = −
√
ε(Ux)

n+1
0 +

(√ε
h

− 1

2

)(
h(Ux)

n+1
0 +

h2

2
(Uxx)

n+1
0 + · · ·

)
.

Using the relation h > h2 and applying the bound in Lemma (3.2), we get
∥Un+1

0 − un+1
0 ∥ ≤ Ch. (24)

In similar way, we can find the error bound at the right boundary xN as
∥Un+1

N − un+1
N ∥ ≤ Ch. (25)

From equations (24)-(25), we conclude that the error bound at the two bound-
aries satisfies first-order uniform convergence. The error bound at the interior
mesh points can be established in the following theorem.

Theorem 3.4. Let un+1
i ∈ C4,2(Ω̄) be the solution to problem in (1)–(3) and

Un+1
i be the solution to discrete problem in (18) and (19). Then, the error bound

at the interior mesh points satisfies
sup

0<ε≤1
max

0≤i≤N ;0≤n≤M
∥Un+1

i − un+1
i ∥ ≤ C(h2 +∆t),

where C is a constant independent of ε and the mesh lengths h and ∆t.

4. Numerical Results

In this section, we carry out numerical experiment in order to corroborate the
applicability of the proposed method with the theoretical results claimed in
the previous sections. Since the exact solution for the first two examples are
not known, we use the double mesh principle to calculate maximum point-wise
errors. For each ε, we can find the maximum point-wise errors for different
values of mesh points and ε using the following formula

EN,∆tε = max
0≤i≤N ;t∈[0,T ]

∣∣UN,∆t(xi, tn)− U2N,∆t/2(xi, tn)
∣∣,

where UN,∆t(xi, tn) denotes the numerical solution obtained at (N,∆t) mesh
points where U2N,∆t/2(xi, tn) denotes the numerical solution at (2N,∆t/2) mesh
points. Whereas the exact solution for the third example is known, we use the
following formula to calculate the maximum point-wise errors.

EN,∆tε = max
0≤i≤N ;t∈[0,T ]

∣∣u(xi, tn)− UN,∆t(xi, tn)
∣∣,
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where UN,∆t(xi, tn) denotes the numerical solution obtained at (N,∆t) mesh
points where u(xi, tn) denotes the exact solution at (N,∆t) mesh points. The
numerical ε-uniform rate of convergence and ε-uniform maximum point-wise
errors were calculated using the following formulas, respectively

RN,∆t = log2

(
EN,∆t

E2N,∆t/2

)
and EN,∆t = max

ε
EN,∆tε .

Example 4.1. Consider singularly perturbed reaction-diffusion problem [9]
∂u
∂t − ε∂

2u
∂x2 + 1+x2

2 u = t3, (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ [0, 1],(
u−

√
ε∂u∂x

)
(0, t) = − 128

35 π
−1/2t7/2, t ∈ [0, 1],(

u+
√
ε∂u∂x

)
(1, t) = − 128

35 π
−1/2t7/2, t ∈ [0, 1].

where the exact solution is not available.

Example 4.2. Consider singularly perturbed reaction-diffusion problem
∂u
∂t − ε∂

2u
∂x2 + (1 + x+ t)u = 43x3t2(1− x)3, (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = (4x(1− x))3, x ∈ [0, 1],(
u−

√
ε∂u∂x

)
(0, t) = t3, t ∈ [0, 1],(

u+
√
ε∂u∂x

)
(1, t) = t3, t ∈ [0, 1].

where the analytical solution for this example is not available.

Example 4.3. Consider singularly perturbed reaction-diffusion problem
∂u
∂t − ε∂

2u
∂x2 + (1 + xe−t)u = f(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ [0, 1],(
u−

√
ε∂u∂x

)
(0, t) = ϕl(t), t ∈ [0, 1],(

u+
√
ε∂u∂x

)
(1, t) = ϕr(t), t ∈ [0, 1].

where the functions f(x, t), ϕl(t) and ϕr(t) are chosen from the exact solution

u(x, t) = (1− e−t)

(
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√
ε

− cos2(πx)

)
.

Table 1 gives the maximum point-wise errors using the present method and the
method in literature. Table 2 gives numerical results for Example 4.1 for equal
number of mesh points. From Tables 1–2, one can observe that the present
method gives an ε-uniform numerical results.
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Table 1. Maximum errors and rate of convergence for Example 4.1.

∀ε N = 32 N = 64 N = 128 N = 256 N = 512
M = 8 M = 16 M = 32 M = 64 M = 128

Our Result
EN,M 2.5491e-2 1.2508e-2 6.1884e-3 3.0781e-3 1.5349e-3
RN,M 1.0226 1.0138 1.0075 1.0039

Result in [9]
EN,M 3.2130e-2 1.6470e-2 8.3343e-3 4.1915e-3 2.1018e-3
RN,M 0.9641 0.9827 0.9916 0.9958

Table 2. Maximum errors and rate of convergence for Example 4.1.

ε ↓ N = 32 64 128 256 512 1024
M = 32 64 128 256 512 1024

10−09 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
10−10 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
10−11 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
10−12 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
10−13 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
10−14 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
10−15 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
10−16 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4

EN,M 6.1884e-3 3.0781e-3 1.5349e-3 7.6638e-4 3.8292e-4 1.9140e-4
RN,M 1.0075 1.0039 1.0020 1.0010 1.0005
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Figure 1. Numerical solution at N = 26,∆t = 1/N , ε = 10−12

for Example 4.1.

Surface plot in Figure 1 and line graph in Figure 2 for Example 4.1 shows
numerical simulations. To confirm the theoretical order of convergence in spatial
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direction graphically, the maximum point-wise errors for Example 4.1 is plotted
using log-log scale as can be seen in Figure 3 showing the ε-uniform convergence.
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Figure 2. Numerical solution in terms of line graph at N =
26,∆t = 1/N , ε = 10−12 for Example 4.1.
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Figure 3. Plot of maximum point-wise errors for Example 4.1
via log-log scale for the result in Table 2.

Table 3 gives numerical results for Example 4.2 for equal number of mesh points.
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Table 3. Maximum errors and rate of convergence for Example 4.2.

ε ↓ N = 32 64 128 256 512 1024
M = 32 64 128 256 512 1024

10−09 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
10−10 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
10−11 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
10−12 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
10−13 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
10−14 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
10−15 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
10−16 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4

EN,M 7.5968e-3 3.8794e-3 1.9599e-3 9.8521e-4 4.9389e-4 2.4727e-4
RN,M 9.6956e-1 9.8505e-1 9.9228e-01 9.9624e-1 9.9810e-1

Similarly, surface plot in Figure 4 and line graph in Figure 5 for Example 4.2
depicts the solution profile.
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Figure 4. Numerical solution at N = 26,∆t = 1/N , ε = 10−12

for Example 4.2.
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Figure 5. Numerical solution in terms of line graph at N =
26,∆t = 1/N , ε = 10−12 for Example 4.2.

To confirm the theoretical order of convergence in spatial direction graphically,
the maximum point-wise errors for Example 4.2 is plotted using log-log scale as
can be seen in Figure 6 showing the ε-uniform convergence.
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Figure 6. Plot of maximum point-wise errors for Example 4.2
via log-log scale for the result in Table 3.

Table 4 gives numerical results for Example 4.3 for equal number of mesh
points.
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Table 4. Maximum errors and rate of convergence for Example 4.3.

ε ↓ N = 32 64 128 256 512 1024
M = 32 64 128 256 512 1024

10−09 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
10−10 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
10−11 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
10−12 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
10−13 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
10−14 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
10−15 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
10−15 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4

EN,M 1.2310e-2 6.4654e-3 3.2345e-3 1.6142e-3 7.8942e-4 3.7678e-4
RN,M 9.2902e-1 9.9920e-1 1.0027e+0 1.0320e+0 1.0671e+0

Again, Figure 7 show the numerical solution for Example 4.3 through surface
plot and Figure 8 is line graph for Example 4.3.
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Figure 7. Numerical solution at N = 26,∆t = 1/N , ε = 10−12

for Example 4.3.
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Figure 8. Numerical solution in terms of line graph at N =
26,∆t = 1/N , ε = 10−12 for Example 4.3.

The theoretical order of convergence in spatial direction is confirmed graphi-
cally through log-log plot of the maximum point-wise errors for Example 4.3 in
Figure 9.
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Figure 9. Plot of maximum point-wise errors for Example 4.3
via log-log scale for the result in Table 4.

From all the tables of values, we deduce that when the mesh points increases
the maximum point-wise errors decreases. All the numerical simulations for the
examples considered depict that the problem (1)–(3) has a parabolic boundary
layer at x = 0 and x = 1.
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5. Conclusion

In this study, the non-standard finite difference method for the numerical solu-
tion of singularly perturbed parabolic reaction-diffusion subject to Robin bound-
ary conditions has presented. The problem is discretized in space direction via
non-standard finite difference method and in time direction via implicit Euler
scheme. Convergence analysis shows that the proposed method is second-order
at the interior points and first-order at the two boundaries in space direction
and first-order in time direction. Thus, the overall spatial direction conver-
gence is first-order. The numerical solutions indicate that the proposed method
is ε−uniformly convergent of first-order which agrees with the theoretical esti-
mates. To see the solution profile, graphs of the numerical solution have been
plotted for the three examples considered.
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