• 제목/요약/키워드: spatial buckling

Search Result 136, Processing Time 0.02 seconds

The Analysis of Local Buckling Behavior for Steel Circular Tubes (국부좌굴을 동반하는 원형강관 부재의 복원력 특성)

  • Lee, Sang-Ju;Lee, Dong-Woo;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.73-80
    • /
    • 2006
  • In this paper, we work with steel circular tubes and propose analysis model which can consider local buckling that it has an effect on failure of steel structures and induce the relation between loading and deformation. First of all, in respect to axial symmetry local buckling, which is simplest case, elasto-plastic behavior acting only axial loads is object. Therefore, it suggests analysis model for axial symmetry local buckling. And that is explainable the process from increasing internal force to decreasing passing maximum internal force. Besides, we induce the relation between the axial force and axial deformation.

  • PDF

An Analytical Study on Influence of Longitudinal Stiffeners on Seismic Performance of Circular Steel Columns (수직보강재가 원형강기둥의 이력거동에 미치는 영향에 대한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.63-70
    • /
    • 2007
  • To improve the land use of urban, Construction of the circular steel column is required recently. The circular steel columns have a advantage for improving a load carrying rapacity as wall as reducing a effective section area. However, the circular steel columns under service load, such as earthquake, shows a tendency to cause local buckling and large deformation. To prevent these phenomena, use of longitudinal stiffeners is considered. The application of longitudinal stiffeners at the circular steel columns is expected to increase a load carrying capacity, buckling strength and seismic performance of circular steel column. However, increasing the loading carving rapacity of buckling which constructed the longitudinal stiffeners, was not investigated yet. Therefore it needs study on effect of longitudinal stiffener in pipe-section steel pier. In this study, the load rallying capacity of buckling of steel pier was investigated by using elastic-plastic finite element analysis considered geometrical and material non-linearity. Also, this study investigated the effect of longitudinal stiffeners on loading carrying capacity of buckling and the relationship between width and thickness of longitudinal stiffeners. And also, a Influence of longitudinal stiffeners on seismic performance of circular steel columns was investigated by numerical analysis

  • PDF

A Study on the Post-Buckling Analysis of Spatial Structures by using Dynamic Relaxation Method (동적이완법을 이용한 공간구조의 후좌굴 해석에 관한 연구)

  • Lee Kyong-Soo;Lee Sang-Ju;Lee Hyong-Hoon;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.175-182
    • /
    • 2005
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. This numerical algorithm do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

A Study on Buckling Characteristics of 2-way Grid Single-Layer Domes Considering Rigidity-Effect of Roofing Covering Materials (지붕마감재 강성효과를 고려한 2방향 그리드 단층돔의 좌굴특성에 관한 연구)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.85-92
    • /
    • 2002
  • Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.

  • PDF

The Buckling Behavior of High-strength Steel Truss Columns with Box Section (박스단면 고강도 트러스 기둥재의 좌굴거동)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.79-86
    • /
    • 2007
  • Recently, as steel structures become higher and more long-spanned, construction of high-strength steels is increasing gradually. Application of high-strength steel can be possible to make a more light and economic steel structures by reducing thickness and space. To apply a high-strength steel to structure, criteria of high-strength steel for buckling is required. However, current specification is not sufficient for criteria of high-strength steels. In this paper, buckling behavior of high-strength steel truss columns with box sections is investigated by using three-dimensional elastic-plastic finite deformation analysis program. The criteria equation for allowable compressive stress of high-strength steel truss columns with box sections is proposed and confirmed the applicability. It is reasonable form analytical results that formulated equations after finding the upper limit of allowable axial direction compression stresses of high-strength steel truss columns. And new equation is suitable to buckling design of high-strength steel truss columns.

  • PDF

The Buckling Characteristics of Single-Layer Lamella Domes according to the Joint Flexibility under Construction (단층라멜라 돔의 시공 중 접합부 강성에 따른 좌굴특성)

  • Suk, Chang-Mok;Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • Single-layer latticed domes with rigid-joint have an advantage in the construction cost and the aesthetic. But, in single-layer latticed domes, the joints are hard to discriminate between pin-joint and rigid-joint, and consisted of semi-rigid joint in practical. And the erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up erection method. This paper verified buckling characteristics of single-Layer lamella domes according to the Joint flexibility under construction by Step-up method. The results are follows: As erection steps increase, the buckling strength decreases. It is occurred the joint buckling by snap through on the top of dome when the joint flexibility close the rigid. And large tensile stress distribution appeared in circumferential member of bottom boundary when the step of construction is low. As the step of construction increase, large compressive stress distribution showed in the top of dome.

Optimum Structural Design of Space truss with consideration in Snap-through buckling (뜀-좌굴을 고려한 공간 트러스의 최적구조설계에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae;Choi, Jae-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2012
  • This study investigates the optimum structural design of space truss considering global buckling, and is to obtain the minimal weight of the structure. The mathematical programming method is used for optimization of each member by member force. Besides, dynamic programming method is adapted for consideration in snap-through buckling. The mathematical modeling for optimum design of truss members consists of objective function of total weight and constrain equations of allowable tensile (or compressive) stress and slenderness. The tangential stiffness matrix is examined to find the critical point on equilibrium path, and a ratio of the buckling load to design load is reflected in iteration procedures of dynamic programming method to adjust the stiffness of space truss. The star dome is examined to verify the proposed optimum design processor. The numerical results of the model are conversed well and satisfied all constrains. This processor is a relatively simple method to carry out optimum design with consideration in global buckling, and is viable in practice with respect to structural design.

Unstable Behavior and Critical Buckling Load of a Single-Layer Dome using the Timber Elements (목재를 이용한 단층 지오데식 돔의 불안정 거동과 임계좌굴하중)

  • Hong, Seok-Ho;Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.19-28
    • /
    • 2023
  • Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.

Analytical and experimental postbuckling of conditioned cables

  • Rivierre, L.;Polit, O.;Billoet, J.L.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.595-614
    • /
    • 2001
  • This paper studies the behaviour of a homogeneous cable in a horizontal rigid duct and loaded by an axial compressive force. This behaviour is characterized by spatial buckling modes, named sinusoidal and helical, due to friction and total or partial cable locking. The evaluation of critical buckling loads involved by drilling technology has been studied by many authors. This work presents a new formulation, taking the friction effects into account, for the transmission of the axial load during the postbuckling process. New analytical expressions of pitches in both buckling cases are also given. A life-sized bench is presented, which permits to study the laying of optical fiber cables by squeezing them into an underground duct. Finally, analytical solutions are compared with experimental tests and finite element simulations.