• 제목/요약/키워드: sparse feature

검색결과 89건 처리시간 0.027초

Missing-Feature 복구를 위한 대역 독립 방식의 베이시안 분류기 기반 마스크 예측 기법 (Mask Estimation Based on Band-Independent Bayesian Classifler for Missing-Feature Reconstruction)

  • 김우일;;고한석
    • 한국음향학회지
    • /
    • 제25권2호
    • /
    • pp.78-87
    • /
    • 2006
  • 본 논문에서는 알려지지 않은 잡음 환경에서 강인한 음성 인식 성능을 위하여 missing-feature복구 기법을 다루며, 베이시안 분류기를 기반으로 하는 마스크 예측 기법의 성능을 향상시킬 수 있는 방법을 제안한다. 기존의 마스크 예측 기법에서는 배경 잡음 종류에 독립적인 성능을 위해 전 주파수 대역을 분할하여 발생시킨 유색 잡음을 마스크 예측기의 훈련에 이용하였으나, 제한된 양의 훈련 데이터베이스 조건에서는 성능의 한계가 불가피하다. 보다 다양한 잡음 스펙트럼을 반영하면서 마스크 예측의 성능을 향상시키기 위해, 서로 다른 주파수 대역에 독립적인 구조를 가지는 베이시안 분류기를 제안하며, 훈련에 사용하는 유색 잡음의 생성 방식을 이에 맞게 수정한다. 각각의 주파수 대역을 분할하여 유색 잡음을 생성함으로써 다양한 잡음 환경을 반영하는 동시에 훈련 데이터베이스 부족 문제를 줄일 수 있다. 제안하는 마스크 예측 기법을 클러스터 기반의 missing-feature 복구 기법과 결합하여 음성 인식기에 적용함으로써 성능을 평가한다. 실험 결과는 제안한 기법이 백색 잡음, 자동차잡음, 배경 음악환경에서 기존의 방법에 비해 향상된 성능을 가짐을 입증한다.

Few Samples Face Recognition Based on Generative Score Space

  • Wang, Bin;Wang, Cungang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5464-5484
    • /
    • 2016
  • Few samples face recognition has become a highly challenging task due to the limitation of available labeled samples. As two popular paradigms in face image representation, sparse component analysis is highly robust while parts-based paradigm is particularly flexible. In this paper, we propose a probabilistic generative model to incorporate the strengths of the two paradigms for face representation. This model finds a common spatial partition for given images and simultaneously learns a sparse component analysis model for each part of the partition. The two procedures are built into a probabilistic generative model. Then we derive the score function (i.e. feature mapping) from the generative score space. A similarity measure is defined over the derived score function for few samples face recognition. This model is driven by data and specifically good at representing face images. The derived generative score function and similarity measure encode information hidden in the data distribution. To validate the effectiveness of the proposed method, we perform few samples face recognition on two face datasets. The results show its advantages.

비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약 (Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means)

  • 박선;이주홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.255-264
    • /
    • 2008
  • 본 논문은 K-means과 비음수 행렬 분해(NMF)를 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안하였다. 제안방법은 비음수 행렬 분해를 이용하여 가중치가 부여된 용어-문장 행렬을 희소(Sparse)한 비음수 의미특징 행렬과 비음수 변수 행렬로 분해함으로써 직관적으로 이해할 수 있는 형태의 의미적 특징을 추출할 수 있고, 주제와 의미특징간의 유사도에 가중치를 부여하여 유사도는 높으나 실제 의미 없는 문장이 추출되는 것을 막는다. 또한 K-means 군집을 이용하여 문장에 포함된 노이즈를 제거함으로써 문서의 의미가 요약에 편향되게 반영하는 것을 피할 수 있고, 추출된 문장에 부여된 순위순서대로 정렬하여 보여 줌으로써 응집성을 높인다. 실험 결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.

Selecting the Optimal Hidden Layer of Extreme Learning Machine Using Multiple Kernel Learning

  • Zhao, Wentao;Li, Pan;Liu, Qiang;Liu, Dan;Liu, Xinwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5765-5781
    • /
    • 2018
  • Extreme learning machine (ELM) is emerging as a powerful machine learning method in a variety of application scenarios due to its promising advantages of high accuracy, fast learning speed and easy of implementation. However, how to select the optimal hidden layer of ELM is still an open question in the ELM community. Basically, the number of hidden layer nodes is a sensitive hyperparameter that significantly affects the performance of ELM. To address this challenging problem, we propose to adopt multiple kernel learning (MKL) to design a multi-hidden-layer-kernel ELM (MHLK-ELM). Specifically, we first integrate kernel functions with random feature mapping of ELM to design a hidden-layer-kernel ELM (HLK-ELM), which serves as the base of MHLK-ELM. Then, we utilize the MKL method to propose two versions of MHLK-ELMs, called sparse and non-sparse MHLK-ELMs. Both two types of MHLK-ELMs can effectively find out the optimal linear combination of multiple HLK-ELMs for different classification and regression problems. Experimental results on seven data sets, among which three data sets are relevant to classification and four ones are relevant to regression, demonstrate that the proposed MHLK-ELM achieves superior performance compared with conventional ELM and basic HLK-ELM.

A Tree Regularized Classifier-Exploiting Hierarchical Structure Information in Feature Vector for Human Action Recognition

  • Luo, Huiwu;Zhao, Fei;Chen, Shangfeng;Lu, Huanzhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1614-1632
    • /
    • 2017
  • Bag of visual words is a popular model in human action recognition, but usually suffers from loss of spatial and temporal configuration information of local features, and large quantization error in its feature coding procedure. In this paper, to overcome the two deficiencies, we combine sparse coding with spatio-temporal pyramid for human action recognition, and regard this method as the baseline. More importantly, which is also the focus of this paper, we find that there is a hierarchical structure in feature vector constructed by the baseline method. To exploit the hierarchical structure information for better recognition accuracy, we propose a tree regularized classifier to convey the hierarchical structure information. The main contributions of this paper can be summarized as: first, we introduce a tree regularized classifier to encode the hierarchical structure information in feature vector for human action recognition. Second, we present an optimization algorithm to learn the parameters of the proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree regularized classifier obtains better performance than SVM and other popular classifiers, and achieves promising results on the three datasets.

Unity3D를 이용한 스트랩 다운 영상 추적기의 동역학 및 유도 법칙 알고리즘의 상호-시뮬레이션 방법에 관한 연구 (Study on Co-Simulation Method of Dynamics and Guidance Algorithms for Strap-Down Image Tracker Using Unity3D)

  • 마린미카엘;김태호;방효충;조한진;조영기;최용훈
    • 한국항공우주학회지
    • /
    • 제46권11호
    • /
    • pp.911-920
    • /
    • 2018
  • 본 연구에서는 스트랩 다운 영상 탐색기를 활용한 유도무기와 목표물 사이의 관측각을 효과적으로 추적할 수 있는 연구를 수행하였고 이를 시각적으로 시뮬레이션 가능한 테스트 베드를 구축하였다. 영상 정보를 이용하여 목표물 추적을 위한 Lucas Kanade의 Optical flow 알고리즘과 같은 희박 특징점 추적 알고리즘 구현 시 고성능의 특징점 분포를 유지시키는 법을 기술하였으며, 특징점 추적 문제를 특징점 관리의 개념으로 확장하여 연구하였다. 이를 구현하기 위해 Unity3D 엔진을 이용하여 시각 환경을 구성하고 OpenCV를 이용하여 영상 처리 시뮬레이션을 개발하였다. 상호-시뮬레이션을 위해 매틀랩(Matlab) 시뮬링크(Simulink)로 동적 시스템 모델링을 하였고, Unity3D를 이용한 시각 환경을 구성, OpenCV를 이용한 컴퓨터 비전 작업을 수행하였다.

명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법 (Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images)

  • 이규현;트란민콴;정원기
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권3호
    • /
    • pp.21-29
    • /
    • 2016
  • 본 논문은 명시야 (bright-field) 현미경 영상를 위한 데이터 기반 세포 분할 알고리즘을 제시한다. 제시된 알고리즘은 일반적인 사전 학습 기법과 다르게 동시에 두 개의 사전과 관련된 희소 코드 (sparse code)를 통해 정의된 에너지 함수의 최소화를 진행하게 된다. 두 개의 사전 중 하나는 명시야 영상에 대해 학습된 사전이고 다른 하나는 사람에 의해 수작업으로 세포 분할된 영상에 대해 학습된 것이다. 학습된 두 개의 사전을 세포 분할 될 새로운 입력 영상에 대해 적용하여 이와 관련된 희소 코드를 획득한 후 픽셀 단위의 분할을 진행하게 된다. 효과적인 에너지 최소화를 위해 합성곱 희소 코드 (Convolutional Sparse Coding)와 Alternating Direction of Multiplier Method(ADMM)이 사용되었고 GPU를 사용하여 빠른 분산 연산이 가능하다. 본 연구는 이전에 사용된 가변형 모델 (deformable model)을 이용한 세포 분할 방식과는 다르게 제시된 알고리즘은 세포 분할을 위해 사전 지식이 필요없이 데이터 기반의 학습을 통해서 쉽고 효율적으로 세포 분할을 진행할 수 있다.

3D-2D 모션 추정을 위한 LiDAR 정보 보간 알고리즘 (LiDAR Data Interpolation Algorithm for 3D-2D Motion Estimation)

  • 전현호;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제20권12호
    • /
    • pp.1865-1873
    • /
    • 2017
  • The feature-based visual SLAM requires 3D positions for the extracted feature points to perform 3D-2D motion estimation. LiDAR can provide reliable and accurate 3D position information with low computational burden, while stereo camera has the problem of the impossibility of stereo matching in simple texture image region, the inaccuracy in depth value due to error contained in intrinsic and extrinsic camera parameter, and the limited number of depth value restricted by permissible stereo disparity. However, the sparsity of LiDAR data may increase the inaccuracy of motion estimation and can even lead to the result of motion estimation failure. Therefore, in this paper, we propose three interpolation methods which can be applied to interpolate sparse LiDAR data. Simulation results obtained by applying these three methods to a visual odometry algorithm demonstrates that the selective bilinear interpolation shows better performance in the view point of computation speed and accuracy.

A 95% accurate EEG-connectome Processor for a Mental Health Monitoring System

  • Kim, Hyunki;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.436-442
    • /
    • 2016
  • An electroencephalogram (EEG)-connectome processor to monitor and diagnose mental health is proposed. From 19-channel EEG signals, the proposed processor determines whether the mental state is healthy or unhealthy by extracting significant features from EEG signals and classifying them. Connectome approach is adopted for the best diagnosis accuracy, and synchronization likelihood (SL) is chosen as the connectome feature. Before computing SL, reconstruction optimizer (ReOpt) block compensates some parameters, resulting in improved accuracy. During SL calculation, a sparse matrix inscription (SMI) scheme is proposed to reduce the memory size to 1/24. From the calculated SL information, a small world feature extractor (SWFE) reduces the memory size to 1/29. Finally, using SLs or small word features, radial basis function (RBF) kernel-based support vector machine (SVM) diagnoses user's mental health condition. For RBF kernels, look-up-tables (LUTs) are used to replace the floating-point operations, decreasing the required operation by 54%. Consequently, The EEG-connectome processor improves the diagnosis accuracy from 89% to 95% in Alzheimer's disease case. The proposed processor occupies $3.8mm^2$ and consumes 1.71 mW with $0.18{\mu}m$ CMOS technology.

Personalized Product Recommendation Method for Analyzing User Behavior Using DeepFM

  • Xu, Jianqiang;Hu, Zhujiao;Zou, Junzhong
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.369-384
    • /
    • 2021
  • In a personalized product recommendation system, when the amount of log data is large or sparse, the accuracy of model recommendation will be greatly affected. To solve this problem, a personalized product recommendation method using deep factorization machine (DeepFM) to analyze user behavior is proposed. Firstly, the K-means clustering algorithm is used to cluster the original log data from the perspective of similarity to reduce the data dimension. Then, through the DeepFM parameter sharing strategy, the relationship between low- and high-order feature combinations is learned from log data, and the click rate prediction model is constructed. Finally, based on the predicted click-through rate, products are recommended to users in sequence and fed back. The area under the curve (AUC) and Logloss of the proposed method are 0.8834 and 0.0253, respectively, on the Criteo dataset, and 0.7836 and 0.0348 on the KDD2012 Cup dataset, respectively. Compared with other newer recommendation methods, the proposed method can achieve better recommendation effect.