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Abstract 
 

Few samples face recognition has become a highly challenging task due to the limitation of 
available labeled samples. As two popular paradigms in face image representation, sparse 
component analysis is highly robust while parts-based paradigm is particularly flexible. In this 
paper, we propose a probabilistic generative model to incorporate the strengths of the two 
paradigms for face representation. This model finds a common spatial partition for given 
images and simultaneously learns a sparse component analysis model for each part of the 
partition. The two procedures are built into a probabilistic generative model. Then we derive 
the score function (i.e. feature mapping) from the generative score space. A similarity measure 
is defined over the derived score function for few samples face recognition. This model is 
driven by data and specifically good at representing face images. The derived generative score 
function and similarity measure encode information hidden in the data distribution. To 
validate the effectiveness of the proposed method, we perform few samples face recognition 
on two face datasets. The results show its advantages. 
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1. Introduction 

A number of approaches [1][2] have been proposed for human face representation towards 
recognition and synthesis. Among them, component analysis based approaches [1][3], e.g. 
two-dimensional principle component analysis (2DPCA) [1], are widely used in both 
recognition and analysis. Although various approaches, e.g., image descriptor based 
approaches [4][5] (such as Gabor and its variants [6]), have been proposed to extract the 
discrimination information of faces and show state-of-the-art performance, component 
analysis approaches are much more popular due to their abilities in both recognition and 
synthesis.  

Component analysis approaches [7,8,9] are widely used for image representation, and 
achieve success in a variety of computer vision tasks [1][3], such as recognition, detection and 
visualization. Commonly, these approaches find a set of components such that they represent 
training data with the least error. As a specific class of component analysis, parts-based 
representation [10,11,12] is successful in a variety of vision tasks, especially good at 
representing human faces because faces are typically structured. These methods encourage the 
components to be some semantic parts of the training images, and represent each image using 
a combination of these parts. At the same time, recent researches have seen the success of 
sparse component analysis (SCA) [9,13] in vision problems. The basic idea of SCA is to learn 
a set of overcomplete components from the training data but activate as few as possible 
components to represent each data point, which has a solid physiologic foundation [9]. SCA is 
efficient in coding and robust to data variance. All the above methods model the observed data 

DR∈x  as the outputs of a random linear system W μ ε= + +x z , where D MW R ×∈  is a 
matrix composed of M  components; 1MR ×∈z  is the vector of combination coefficients 
corresponding to M  components; 1Dμ R ×∈  is the vector of mean value and 1Dε R ×∈  is the 
vector of random noise. Note that W  and μ  are determined to fit the training data. 

Parts-based representation [10,11,12] encourages the components W  to be sparse and 
expects the components to capture the semantic parts of given images. It represents an image 
in the part-by-part style, where each part is represented by a set of components like holistic 
methods (e.g. PCA [7]). Among them, multiple cause factor analysis (MCFA) [11] and 
structured sparse principle component analysis (SSPCA) [12] show attracting abilities, e.g., 
better factorization [11,12] than non-negative matrix factorization (NMF) [10]. MCFA learns 
a common spatial partition for given data, and models each part of the partition as a discrete 
state space or a linear space. This method is particularly good at representing aligned faces. 
However, it may result in non-continuous parts and its parts cannot benefit from the robustness 
of sparse component analysis. SSPCA is able to find convex areas from given images and 
could be straightforwardly scaled to several vision problems. For face representation, however, 
convex areas [12] are not usually flexible enough to capture the real face structures. Recently, 
[14] proposes a parts-based method (latent spaces with structured sparsity, LSSS) based on 
SSPCA, where the optimization is elegantly converted to two convex optimization problems. 
Also, [15] proposes a hierarchical parts-based model for human face parse, and [16] proposes 
a factored shapes and appearances (FSA) model for parts-based object recognition. 

However, the above approaches didn’t fully exploit the distribution information hidden in 
the data, which is demonstrated to be very useful in face recognition, especially when only a 
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few samples are available. Recently, a probabilistic branch of approaches, called generative 
score space, have received increasing attention. Generative score space is a class of principled 
approaches, which aim to integrate the abilities of discriminative models and probabilistic 
generative models for recognition. In these approaches, generative distribution can drive 
feature mappings over observed variables, hidden variables and model parameters while 
classification can be then performed in the derived feature spaces. The advantage of using 
generative score space to perform face recognition is that, score space is able to discover the 
information hidden in data by inferring hidden variables, which is additional and useful for 
few samples face recognition. Different from traditional generative score space approaches 
which utilize existing generative model (e.g. gaussian mixture model, hidden markov model), 
in this paper, we propose a new generative model to represent human face for few samples 
face recognition, i.e. generative score space based face recognition (GSSFR). Specifically, to 
integrate the flexibility of parts-based representation and the robustness of sparse component 
analysis, we built the two procedures into a probabilistic generative model and propose a 
parts-based sparse component analysis method to model human face. In the path from 
observed images to hidden variables, it first decomposes images to several parts and then 
learns a sparse component analysis model for each part. In the path from hidden variables to 
observed images, it generates an image pixel-by-pixel where, for each pixel, it first selects a 
part and then generates the pixel from the sparse component analysis model of the part. Then a 
feature mapping (i.e. score function) encoded hidden information is derived from the model. 
At last, a similarity measure is defined over the feature mapping to perform few samples face 
recognition. See Fig. 1 for the illustration of our proposed approach. As shown in Fig. 1, the 
procedures of the proposed approach can be summarized as follows: 

Step 1. We learn GSSFR model which incorporates the superiorities of both parts-based 
representation and sparse component analysis. 

Step 2. We derive feature mapping for training set and test set respectively from the 
learned GSSFR via regularized inference.  

Step 3. We define a similarity measure over the learned feature mappings. Face 
recognition can be then performed based on the defined similarity measure, i.e. encouraging 
the defined similarity to take a large value for a pair of images with the same label and to take 
a small value for a pair of images with distinct labels.   

The advantages of our proposed approach for the task of few samples face recognition can 
be briefly summerized as follows: 

(1) We propose a probabilistic generative model for face representation. The proposed 
model can learn continuous and flexible face parts. 

(2) The derived score function from the proposed model is a function over observed 
variables, hidden variables and model parameters, which is informative for the few samples 
face recognition task.  

(3) Our approach is able to exploit unlabeled data and works well with few labeled training 
data which is usually expensive to obtain. 

The remainder of this paper is organized as follows. We first introduce related works in 
Section 2. Section 3 presents the generative score space based sparse component analysis 
model, and derives the feature mapping and similarity measure. Section 4 experimentally 
evaluates the model for few samples face recognition on two popular dataset. Section 5 draws 
a conclusion. 
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2. Preliminaries and Related Work 
This section will briefly review some methods which are closely related to our approach, 
leaving other methods out. 

Sparsity inducing priors. Different from the deterministic framework [13] that uses 
certain norms to induce sparsity, the probabilistic framework induces sparsity in terms of 
certain probabilistic priors [17,18][32,33], e.g. Laplace prior, Jeffrey prior and Inverse 
Gamma prior. The Laplace prior is the probabilistic implementation of 1l  norm, with the 
density function: 

                                                        
1( ; , ) exp( )
2

x u
P x u b

b b
−

= −                                          (1) 

where u  is a location parameter and 0b >  is a scale parameter. Letting 0u = and 1b = , the 
objective function (i.e., log likelihood function) is 

1
x which induces sparsity. The objective 

function of Jeffrey prior is log x  that induces higher sparsity and constrains variables positive. 
Inverse Gamma prior allows to tune the sparsity degree through configuring its parameters. 

We note that Multinomial prior also induces sparsity when the trail number is configured to 
1n = . Letting the variable be 1{ , , }kr r=r  , its distribution is: 

                                                           
1

( ; 1; ) k

K
r
k

k

P n α α
=

= =∏r                                        (2) 

where K  is the number of probable events; kr   is the times of observing the k-th event in n  

trials and satisfies k
k

r n=∑ ; kα  is the probability of observing the k-th event in a trial and 

satisfies 1kk
α =∑ . For each sample drawn from ( ; 1; )P n α=r , only one element takes 1 

and others take 0. For instance, when 4K = , a possible sample is (0,1,0,0)T=r . This prior 
induces extreme sparsity. 

Multiple Cause Factor Analysis (MCFA). For images, cause and factor correspond to 
image part and component respectively, where component shares the same definition with [13], 
i.e. linear basis. So we refer to them as part and component respectively. MCFA [11] models 
the image vector D∈x R  as the output of a multiple cause model. To generate an image x , 
for each pixel dx , this model first selects a part (recorded by .dr ) and then generates the pixel 
using the linear model corresponding to the part, with the combination coeffcients .kz . The 
joint distribution of this model is: 

        
, , ,

( , , ) ( ; , ) ( ;0,1)dk dk
r r

d dkm km dk km dkm dk
d k k m d k

P R Z N x w z μ N z α= +∑ ∑∏ ∏ ∏x            (3) 

where , ,d k m  index pixel, part and component respectively; { }km kmZ z=  is the coeffcient 

matrix for all M K× components; the vector . 1( , , )T
km km Dkmw w=w   is the m-th component 

of the k-th part; dkμ  denotes the mean value and 
dk∑ denotes the variance of Gaussian 
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noise; { }dk dkR r=   is a set of binary indicators, where the binary indicator dkr  takes 1 if the 
d-th pixel belongs to the k-th part; [ ] [0,1]dk dkα E r= ∈  is the probability of the pixel d   
belonging to the part k . 

Generally, there are three limitations for MCFA. First, MCFA does not exploit the 
distribution information hidden in the data, which is demonstrated to be very useful in few 
samples face recognition. Second, MCFA does not benefit from the advantages of sparse 
component analysis. Third, image parts learned by MCFA are usually discontinuous, which 
will potentially lead to the boundary-effect in synthesis. The reason accounting for the 
discontinuity is that the pixels are independently generated, without considering the 
dependence among neighbor pixels [11]. To overcome the three limitations, we will present an 
effcient model base on generative score space in Section 3. 

3. Generative Score Space based Sparse Component Analysis 

 
Fig. 1. The framework of the proposed approach. 

 

In this section, we proceed to present the proposed model. Here we give a brief summary for 
the proposed method that comprises three main parts. First, train the generative model GSSFR 
using unlabeled data in an unsupervised style and derive the score function (feature mapping), 
as demonstrated in Sections 3.1, 3.2 and 3.3. Second, construct the similarity based on the 
trained model, as demonstrated in Section 3.4. Third, the similarity is embedded into a K-NN 
classifier for recognition. The comprehensive demonstration will be given in the experiments. 
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3.1 Model formulation 
In this section, we first present the sparse component analysis model for each part and then 
glue the models for different parts together. Let D   be the number of pixels of a face image, 
and D

k R∈y  be the k-th part of all K  face parts. We model each part as a linear sparse 

component analysis model: 
1

M

dk km dkm
m

y z w
=

=∑ , where M  is the number of components; 

. 1{ }M
km m=w  are the over-complete components for the k-th part; the coefficients {z }km km  are 

encouraged to be sparse by the Laplace prior in Eq. (1). 

The proposed model generates an image pixel-by-pixel. For the pixel dx  , it first selects a 
part from K  ones, and then accordingly generates the pixel from the k-th sparse component 
analysis model. The selection is recorded by a random binary vector . 1( , , )T

d d dKr r=r   
where {0,1}dkr ∈  follows Multinomial prior (Eq. (2)), and 1dkr =  if the k-th part is selected. 

Then we have the model: 
1

K

d dk dk d d
k

x r y μ ε
=

= + +∑ , where dky  is the d-th element of the k-th 

part defined above; dμ  denotes the mean value and 2~ (0, )d dε N σ  is the random noise; 

. 1( , , )T
d d dKα α=α   is the parameter of Multinomial distribution. Then we have: 

                                          
1 1

K M

d dk km dkm d d
k m

x r z w μ ε
= =

= + +∑ ∑                                         (4) 

The conditional distribution over the observed variable x  can be expressed as: 

        2
.( , ) ( , ) ( ; , )d d d dk km dkm d dk m

d d

P R Z P x Z N x r z w μ σ= = +∑ ∑∏ ∏x r                (5) 

The above conditional distribution is significantly different from that of MCFA (Eq. (3)). In 
MCFA, a pixel dx  is generated by a mixture of K  independent Gaussian distributions, each 
of which corresponds to a part. When generating the pixel, one first selects a part and therefore 
a Gaussian from K  ones. In the above model, a pixel dx  is generated by a single Gaussian 
distribution whose mean value is a function of the part index. When generating the pixel, one 
first selects a part and then determines the mean value of the Gaussian. 

We also note that, in the above model, for a pixel dx , K  parts have K  corresponding 

mean values but share only one variance parameter 2
dσ , which is different from MCFA where 

K  parts have K  variance parameters. This difference is important, since it makes the 
sampling distribution of kmz  easy (see the sampling distribution in Eq. (9)). 

3.2 Continuous and smooth partition 
The proposed method seeks to partition faces into several parts. Such a part, e.g. mouth, is 

expected to be spatially continuous. Recall that the parts are inferred by selecting a part for 
each pixel, and the selection for the d-th pixel is recorded by the variable .dr  that follows the 
Multinomial prior. We refer to this prior as 1 .( )dP r . On the other hand, to learn 
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Fig. 2. Graphic illustration for our proposed approach. 

continuous parts, we encourage that the selection for the pixel dx  (recorded by .dr ) is 
continuous parts, we encourage that the selection for the pixel dx  (recorded by .dr ) is 
consistent with the selections for its neighbors. We derive a continuity inducing prior 
over . 1( , , )k k Dkr r=r  , and refer to this prior as 2 .( )dP r . The above two priors over .dr  can be 
merged using the products of two experts [19] where each prior is an expert. That is 

. 1 . 2 .
1( ) ( ) ( )d d d

d

P P P
Z

= ⋅r r r , where dZ   is the partition function. Then the overall prior over 

.{ }dR = r  is 

                                        . 1 . 2 .
1( ) ( ) ( ) ( )d d d

d d d

P R P P P
Z

= = ⋅∏ ∏r r r                                                (6) 

Considering { }km kmZ z=  are encouraged to be sparse by the Laplace prior, we have 
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         (7) 

where dD  is a set of neighbors of dkr , and the number of the neighbors is set 2dD = .    

Note that the resulting prior is factorable according to the pixel d . This factorization is 
very important since it makes the learning and inference procedure tractable. Considering 

( , )P R Zx  (Eq.(5)), ( )P R  (Eq.(7)), and ( )P Z (Eq.(7)), the joint distribution 

( , , ) ( , ) ( ) ( )P R Z P R Z P R P Z=x x  of the proposed model is 
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where we set 1, 0; ( , , , )dkm d d dkb u θ w μ σ α= = =  is the parameter set to be learned. Fig. 2 is 
the graphical illustration of this model. As shown in Fig. 2, r  is parameterized by α  and 
controls the generation of the part and z  is parameterized by b  and controls the generation of 
the sparse coefficient. r  and z  control the generation of image by means of a Gaussian 
distribution. 

For face representation, the parameters and variables of our proposed approach can be 
intuitively interpreted. dkr  indicates whether the d-th pixel belongs to the k-th part, and 

[ ]dk dkα E r=  is the prior probability that the d-th pixel belongs to the k-th face part. The 
parameter .kα  defines the shape of the k-th face part. .kmw  is the m-th component of the k-th 
face part. .μ  is the average face. Intuitively, if a random variable depends on a specific sample, 
it encodes the information related to the sample and is able to represent the sample. More 
specifically, for a sample, variables dkr , kmz  depend on the sample and are suffcient to 
reconstruct the sample. 

3.3 Inference and learning 
For the proposed model, it is difficult to estimate the posterior distribution of hidden variables 
using deterministic methods, such as variational inference [20]. As an alternative, we use 
Monto Carlo EM algorithm [21] to attack this problem. The method first draws the samples of 
hidden variables from the posterior sampling distribution using Gibbs sampling (E step) and 
then estimates model parameters using the drawn samples (M step). 

E-step The Gibbs sampling distribution for dkr  can be formulated as: 

,

( , ) ( ) ( )
( , ) ( , ) ( )

( , ) ( )
dk dk dk

dk dk dk dk
dk dk

P Z R P r R P R
P r R Z P Z R P r R

P Z R P R
− −

− −
− −

= ∝
x

x x
x

 

where dkR−  denotes R  but with dkr  omitted. Substituting Eq. (5) and Eq. (6) into the above 
formula, we have: 

2
, '

'
( , ) ( ; , ) exp 1 dk

d

r
dk dk d dk km dkm d d dk d k dk

k m d D
P r R Z N x r z w μ σ r r α−
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∑ ∑ ∑x       (9) 
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Sampling from this distribution is very simple since dkr  is discrete. The sampling 
distribution for kmz   can be similarly derived and takes the following form: 

                          
2

2

( ; , ) 0 ( )
( , , )

( ; , ) 0 ( )
km zkm zkm km

km km
km zkm zkm km
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x                              (10) 
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         (11) 

The resulting sampling distribution is discontinuous. However, we can effectively sample 
from it using a very simple yet effective strategy as follows: (1) sample from the distribution 
P+  in Eq.10  and output the non-negative samples ( 0kmz ≥ ); (2) sample from the distribution 
P−  in Eq.11 and output the negative samples ( 0kmz ≤ ); (3) combine the two set of samples as 
the output. 

M-step Note that the above sampling procedures are performed for every sample cx . Let 
,

1{ }c i J
iR =  and ,

1{ }c i J
iZ =  be the samples drawn from ( , )cP R Zx  and ( , )cP Z Rx  

respectively, then M step estimates model parameters by maximizing 
1

log ( , , )
N

c

c
E P R Z

=
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with respect to parameters.  

Then we obtain the update rules for the parameters: 

         

,
2

,

2
2

, ,

( )
/ ,

( )

1 1,

c c c c c
dk km d d di ij dij

c i k j mc c
dk dk dk mkd c c

c c k dk km
c

c c c c c c
d d dk km dkm d dk km dkm d d

c k m c k m

r z x μ r z w
α r r w

r z

μ x r z w σ r z w μ x
N N

≠ ≠

− −
= =

   
= − = + −   

   

∑ ∑
∑ ∑ ∑

∑ ∑ ∑ ∑

       (12) 

where ⋅  denotes the mean over samples, e.g., , ,1c c c i c i
dk km dk km

i
r z r z

J
= ∑ .   

The overall algorithm is an iteration of the following two steps: (1) for each given training 
image x , draw the samples of R  and Z  (Eq. (9)); (2) update , , ,α μ σw  using the drawn 
samples. 

3.4 Score function derived from the proposed model 
We use the proposed model for few sample face recognition, with a similarity measure. 
Note that the posteriors ( )c cP Z x and ( )c cP t x  captures information associating with 

the sample cx . Although a number of methods [22,23] have been proposed to construct 
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and learn similarity measures, we define the similarity between the samples cx and ax  as 
follows since it can naturally work on probabilistic generative models. We use the 
combination of projections 

( )
[ ]c c

c
P Z

E Z
x

 and 
( )

[ ]c c
c

P R
E R

x
 as the feature ch to 

identify cx , 
                                 ,( , ) ( , )

({ [ ], [ ]} )c c c c
km dk

c c c
km dk k mP z x θ P r x θ

h vec E z E r=                       (13) 

Then the similarity is defined as the weighted inner product: 
                                             ( , )c a cT a

GSS X=x x h h                                            (14) 
where X is a diagonal matrix weighting face components and is determined by 
maximizing the inter-class distances. Both the distribution ( , )c c cP Z R x   and the 

projection ch  (Eq. (13)) are estimated from the samples of ,c cZ R   drawn by the Gibbs 
sampling. We refer to the similarity function as GSS  (inner product) throughout the 
remainder section. 
 

4. Experimental Results 

4.1 Few samples face recognition 
Few samples face recognition is particular valuable in practice where usually only a few 
samples are available for each subject. We here introduce generative score space based 
sparse component analysis to attack the challenging problem. The points are three folds: 
(1) parts-based strategy is particularly good at representing face for its flexibility [24]; (2) 
the proposed method is able to learn the face representation from unlabeled face data 
unsupervisedly, which can derive score function (i.e. feature mapping) and similarity 
measure for the recognition task; (3) the derived feature mapping encodes information 
hidden in the human faces. 

To validate our proposed approach can learn continuous and flexible face parts, we 
firstly learn face-parts priors. For face applications, such as face synthesis and smile 
learning, the learned face partition and resulting parts can be reused because all of faces 
present a comparable structure. Here we use the CBCL face database [27] to learn the 
face parts prior. For our methods and MCFA, the number of parts and components are set 
to be K=6 and 200( )M D= <  respectively. In fact, M in a wide range ( [20,240]M ∈  
empirically) works well and is able to learn a reasonable part prior. The learned parts of 
MCFA and our method are respectively shown in the top row and the bottom row of Fig. 
3. The k-th column is the visualization of the part-defining parameter .kα . The pixel 
value denotes the probability of the pixel belonging to the part. There is a remarkable 
difference between our model and MCFA: ours learns a soft segmentation (the parts are 
partially overlapped at the boundaries among parts) while MCFA learns a hard 
segmentation. 

In the following section, we use the proposed model GSSFR for few samples face 
recognition. The proposed model will compare with the component analysis methods and 
other related methods. We use offline cross validation to choose the parameters, i.e., 
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selecting the parameters such that the model trained from training set obtains the best 
performance on the test set. Then the chosen parameters are fixed for the rest 
experiments. To learn a set of overcomplete components, the number of components M  
in sparse component analysis is usually set to be a large value ( M D> ) [9]. However, we 
found that M D<  could produce satisfied results. So in the following experiments, for 
computational efficiency, we set M D< . 

 

 

Fig. 3. Face parts learned by MCFA (top) and Ours (bottom). The pixel values denote the probabilities 
of pixels belonging to parts. 

 
We evaluate the proposed method on two experiments: few samples face recognition 

on PIE database [25], and few samples face recognition on AR database [26]. The 
experimenting methods are summarized as follows: 

Baseline. The baseline method is the nearest neighbor classification using the raw 
pixel, without utilizing the labeled data. 

Eigenface [37].  The Eigenface method is based on linearly projecting the image space 
to a low dimensional feature space, and uses principal components analysis (PCA) for 
dimensionality reduction. 

Fisherface [37]. The Fisherface method is based on Fisher’s Linear Discriminant and 
produces well separated classes in a low-dimensional subspace, even under severe 
variation in lighting and facial expressions.  

SSDA [28]. Semi-Supervised Discriminant Analysis using robust path-based 
similarity.  It can utilize both labeled and unlabeled data to perform dimensionality 
reduction in the semi-supervised setting.   

SGDA [29]. Semi-supervised Generalized Discriminant Analysis. It is an extension of 
generalized discriminant analysis (GDA) and utilizes unlabeled data to maximize an 
optimality criterion of GDA. 

FE [30]. a Feature Encoding method. It models the distribution of data and derives 
features from the distribution.  

GNMF [31]. Graph regularized Nonnegative Matrix Factorization. It seeks to find a 
compact representation, which uncovers the hidden semantics and simultaneously 
respects the intrinsic geometric structure. 

DFD [4]. Discriminant Face Descriptor. It proposes a learning based discriminant face 
descriptor  for face recognition . 

MCFA [11]. Multiple Cause Factor Analysis. It is proposed for the unsupervised 
learning of parts-based representations of data. 
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SSPCA [12]. Structured Sparse Principle Component Analysis. It is an extension of 
sparse PCA , where the sparsity patterns of all dictionary elements are structured and 
constrained to belong to a pre-specified set of shapes.  

KTPSL [36]. Kernel-based Transition Probability towards Similarity Learning for 
semi-supervised learning. It constructs similarities via comparing kernel least squares to 
variational least squares in the probabilistic framework.  

PCSDA [38]. Pairwise Costs in Semisupervised Discriminant Analysis. It is a 
state-of-the-art semi-supervised approach for face recognition.  

GSSFR. The proposed generatvie score space based face recognition approach, which 
presents a new generative model for face representation and derives feature mapping and 
similarity measure from the model for few samples face recognition. 

For Eigenface, Fisherface, SSDA and SSPCA, we leverage the programs released by 
the authors or use the parameters suggested by authors. We implement the rest 
approaches according to the authors’ suggestion. For the component analysis based 
methods, i.e., GNMF, MCFA, SSPCA and the proposed approach, we will select the 
parameters using offline cross validation and specify in the following experiments 

4.1.1 Few samples face recognition on PIE database 
The PIE face database [25] is used for evaluation of few samples face recognition for its 
high challenging. It contains 41, 368 face images which are captured from C = 68 
individuals under illumination, varying lighting, and pose conditions. We choose the 
frontal pose (C27) for the recognition experiment, which is composed of about 49 face 

 

 
Fig. 4. Examples of a subject with pose C27 in CMU PIE database. 

 

images per individual [27]. Examples of a subject with pose C27 in CMU PIE database 
are shown in Fig. 4. All these images are cropped and normalized to 32 × 32 gray images. 
For each individual, we randomly select 30 images as the training dataset and the rest as 
the testing set. For each person in the training set, we randomly select p ∈ {2, 3, 4, 5} 
images and label them, and remain the rest images unlabeled. The recognition phase 
assigns each unlabeled or test image to the nearest labeled sample via similarity function 

GSS .  
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Table 1. Comparisons of recognition accuracy on PIE database. p is the number of labeled images 
randomly chosen from dataset in each round of experiment. The number of neighbors k used in K-NN 

classifier is determined by cross validataion, k = 1, 1, 2, 2 for p = 2, 3, 4, 5 respectively. 

Method 
p = 2 p = 3 

    

Unlabeled Test Unlabeled Test  
     
    

Baseline 24.99±1.22 25.11±2.55 25.48±2.76 25.22±2.98 
Eigenface[37] 21.91±2.46 20.98±2.93 21.98±3.25 22.00±1.92 
Fisherface[37] 47.92±2.97 48.64±3.08 49.27±1.67 48.89±1.99 

SSDA [28] 46.83±2.11 46.92±2.44 47.79±2.17 47.59±1.27 
SGDA [29] 47.99±1.94 48.03±3.53 48.52±1.72 49.06±1.55 

FE [30] 47.66±2.32 47.87±2.54 48.28±2.55 49.46±2.06 
GNMF [31] 49.32±2.77 49.09±2.97 50.99±2.38 51.01±2.37 

DFD [4] 29.55±1.76 28.89±2.87 32.28±2.56 33.99±2.09 
MCFA [11] 35.07±2.86 34.98±1.24 39.21±3.16 40.12±3.09 
KTPSL [36] 50.32±1.02 49.65±2.43 56.15±1.09 49.87±1.21 
PCSDA [38] 50.96±1.56 50.78±2.13 54.72±2.43 55.66±1.13 
SSPCA [12] 41.04±2.76 42.96±2.98 44.17±3.14 45.86±3.43 

GSSFR 51.84±2.00 51.56±2.43 55.78±2.04 57.16±1.89 
   

Method 
p = 4 p = 5 

    

Unlabeled Test Unlabeled Test  
     
    

Baseline 25.99±2.21 25.91±1.56 26.18±3.76 26.52±1.99 
Eigenface 22.21±1.46 22.78±1.94 23.58±2.25 23.94±1.76 
Fisherface 46.82±1.97 47.68±2.13 49.65±2.67 50.09±2.43 
SSDA [28] 47.89±2.41 47.92±2.64 48.79±3.17 49.23±2.27 
SGDA [29] 48.97±2.94 49.00±2.53 49.65±2.72 50.06±2.55 

FE [30] 49.66±1.32 48.47±1.52 48.98±1.55 49.96±2.26 
GNMF [31] 51.32±2.21 52.09±1.87 53.59±2.68 53.91±1.37 

DFD [4] 34.55±2.76 38.89±3.87 39.58±1.56 40.19±3.092 
MCFA [11] 42.05±1.82 44.98±2.24 45.21±2.16 47.12±2.19 
KTPSL [36] 56.76±3.21 53.32±1.54  57.87±2.09 60.09±2.98 
PCSDA [38] 58.65±1.29 59.91±1.08 61.38±2.03 66.28±1.71 
SSPCA [12] 45.94±1.76 46.86±3.98 47.17±2.14 49.96±1.44 

GSSFR 59.94±2.10 61.16±1.42 62.78±2.04 67.25±2.39 
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The proposed method will compare with the state-of-the-art methods. In each test 
round, we train the proposed model using all training images. Then, for each labeled 
training image and each test image, we extract the feature mapping (i.e. score space) 
using Eq. (13) and compute the similarity using Eq. (14). Having the face feature 
mapping and similarity, we use k-nearest neighbor classifiers for face recognition. We 
set k = 1, 1, 2, 2 for p = 2, 3, 4, 5 respectively. Note that, the number of neighbor k should 
be smaller than the number of labeled images p. In this experiment, k is determined by 
cross validation over a small test set. We test the approaches for 30 rounds and report the 
average results. We respectively set K = 6 and M = 200 according to cross validation for 
MCFA and SSPCA. The parameters of the proposed model is configured to K = 6 and M 
= 20 ( SN<  ) using offline cross validation. 

The average recognition accuracies are reported in Table 1. We find that, compared 
with Baseline and Eigenface, all the other approaches obtain significant improvements. 
In particular, the performance of Fisherface is consistently superior to that of Eigenface. 
The reason is that Fisherface is insensitive to gross variation in lighting direction and 
facial expression. Meanwhile, our proposed approach GSSFR outperforms parts-based 
methods GNMF, MCFA and SSPCA due to the consideration of probabilistic modeling 
of image distribution. As an unsupervised method which only exploits unlabeled data, FE 
shows competitive performance with semi-supervised methods (SSDA, SGDA, DFD, 
KTPSL, PCSDA) exploiting both labeled and unlabeled data. Overall, our proposed 
approach GSSFR with the similarity function GSS , as shown in Table 1, achieves the best 
performance among these compared approaches over both unlabeled dataset(>1.0%) and 
test dataset(>1.5%) in most cases . Intuitively, the ability of our method to utilize 
unlabeled data comes from the probabilistic generative model which encodes the 
distribution information or manifold structure, and the derived feature mapping is a 
function over observed variables, hidden variables and model parameters, which is 
informative for few samples face recognition task. 

4.1.2 Few samples face recognition on AR database 
In this section, AR dataset [26] is applied to few samples face recognition. To compare 
with [28] fairly, we follow its experimental setting where 100 persons (50 men and 50 
women) are selected from all 126 persons (70 men and 56 women) for this experiment, 
just as are done in [28]. Totally, we have 2600 images (26 images are taken from each 
person with frontal view) under different expressions, illuminations and occlusions. All 
images are converted to gray images and normalized to 33 × 24. For each person, 13 
images are randomly selected to train the model and the rest for testing. Among the 13 
training images, we randomly select p ∈ {2, 3, 4, 5} images and give them labels. For 
MCFA and SSPCA, the number of parts is set to K = 6, and the number of components is 
set to be M = 200 using cross validation. Fig. 5 presents some examples of eight subjects 
from AR database. 

Similar with the previous experiment, the number of the components is set to be M = 
20. In each test round, we train the proposed model using all training images. Then, for 
each labeled training images and each test images, we extract the sore function using Eq. 
(10) and compute the similarity using Eq. (11). Having the face feature mapping and 
similarity, we use k-nearest neighbor classifiers and set k = 1, 1, 2, 2 for p = 2, 3, 4, 5 
respectively for face recognition. We perform each experiment for 20 rounds and report the 
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Fig. 5. Examples of eight subjets from AR database. 

average results in Table 2. As shown in Table 2, Fisherface again gain a significant 
improvement over Eigenface. Similar to PIE dataset, semi-supervised learning approaches 
SSDA, SGDA, DFD, KTPSL, PCSDA show competitive performance. Unsupervised 
learning approach FE again obtains convincing results, which validates its ability to exploit 
unlabeled data. Our proposed method GSSFR outperforms other compared methods in most 
cases as good as on PIE dataset, which further validates its robustness to different databases. 
The reason accounting for this superiority is that the proposed approach can exploit 
information hidden in the data, which encodes high-level information especially useful in few 
sample face recognition.  

4.2 Face recognition under random block occlusion  

To further validate the effectiveness of our proposed approach on face representation, we 
design another experiment to perform face recognition under random block occlusion. 
The experiment is performed on face images chosen from AR dataset. Specifically, we 
choose images with two expressions: neutral and smile. We crop all the face images and 
normalize them to 32×32  gray images. 50 subjects are randomly chosen from 100 
subjects to form training dataset. Afterwards, we make occlusions to the training set by 
means of setting the randomly chosen rectangles to be black. The size of the occlusion 
rectangles varies from 5×5 to 12×12.  The compared methods include: Martinez’s [34], 
which presents a probabilistic approach that is able to compensate for imprecisely 
localized, partially occluded and expression variant faces even when only one single 
training sample per class is available to the face recognition system; NRBM [35], which 
produces not only controllable decomposition of data into interpretable parts but also 
offers a way to estimate the intrinsic nonlinear dimensionality of data. For our method, 
we set 6M = , 5K = . 
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Table 2. Comparisons of recognition accuracy on AR database. p is the number of labeled images 
randomly chosen from dataset in each round of experiment. The number of neighbors k used in K-NN 

classifier is determined by cross validataion, k = 1, 1, 2, 2 for p = 2, 3, 4, 5 respectively. 

Method 
p = 2 p = 3 

    

Unlabeled Test Unlabeled Test   
     
    

Baseline 14.35±1.19  14.83±1.20 18.90±1.35 19.20±1.44 
Eigenface[37] 13.55±1.16 14.16±1.13 17.98±1.25 18.45±1.22 
Fisherface[37] 47.41±1.92 48.12±1.73 52.29±2.65 52.96±2.29 

SSDA [28] 57.32±3.85 58.16±3.63 71.80±2.36 71.51±2.17 
SGDA [29] 59.04±3.64 58.92±3.45 71.07±2.71 72.76±2.53 

FE [30] 56.67±2.93 56.89±2.86 68.82±2.54 68.56±2.36 
GNMF [31] 58.36±2.77 58.64±2.61 70.72±2.38 70.51±2.27 

DFD [4] 44.40±2.76 43.73±2.65 43.58±3.03 43.29±2.92 
MCFA [11] 33.71±2.47 34.16±2.28 40.16±2.16 40.63±2.09 
KTPSL [36] 58.61±1.11 45.98±1.52 71.32±1.97 70.87±2.21 
PCSDA [38] 59.23±1.15 59.78±1.09 71.83±1.24 72.89±1.45 
SSPCA [12] 39.63±2.69 40.07±2.42 47.15±2.10 47.71±2.03 

GSSFR 59.58±1.21 59.61±1.55 72.98±1.24 73.12±3.09 
  

Method 
p = 4 p = 5 

    

Unlabeled Test Unlabeled Test  
     
    

Baseline 23.16±1.06 23.05±1.19 26.62±1.30 26.46±1.36 
Eigenface[37] 22.32±1.05 22.31±1.18 25.76±1.29 25.70±1.27 
Fisherface[37] 69.79±1.34 69.86±1.52 67.91±1.88 67.50±1.50 

SSDA [28] 70.13±2.13 72.54±2.49 75.71±1.42 76.55±1.23 
SGDA [29] 73.22±2.26 74.53±2.55 76.27±1.29 77.12±1.55 

FE [30] 71.24±1.86 72.12±2.55 71.58±2.31 73.15±2.45 
GNMF [31] 72.26±2.34 73.33±2.41 74.15±2.33 75.78±2.38 

DFD [4] 58.58±1.78 58.86±1.92 69.61±1.40 69.96±1.43 
MCFA [11] 45.67±1.21 45.83±1.32 50.16±1.16 49.81±1.24 
KTPSL [36] 70.32±1.71 76.55±2.03 77.56±1.88 75.89±1.42 
PCSDA [38] 75.20±1.27 74.87±1.09 78.76±1.24 79.18±1.22 
SSPCA [12] 53.07±1.18 53.28±1.27 58.37±1.12 58.82±1.19 

GSSFR 77.18±1.29 78.22±2.37 80.23±1.56 79.92±2.21 
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Table 3. Comparison of recognition accuracy on face images from AR dataset with neural expression 
under random block occlusion 

 

Method 

Occluded region 

5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12 

Martinez’s[34] 

 

85.91 

 

82.50 

 

81.16 

 

77.01 

 

75.12 

 

74.09 

 

72.52 

 

69.29 

 

 
NRBM[35] 

 

85.33 84.32 81.95 

 

80.43 75.92 72.64 70.76 66.52 

GSSFR 86.54 85.72 83.55 80.87 77.21 76.54 73.48 71.27 

 
Table 4. Comparison of recognition accuracy on face images from AR dataset with smile expression 

under random block occlusion 

 

Method 

Occluded region 

5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12 

Martinez’s[34] 

 

76.10 

 

74.37 

 

67.28 

 

65.09 

 

63.51 

 

61.93 

 

60.04 

 

58.73 

 

 
NRBM[35] 

 

76.65 75.23 74.81 

 

72.36 66.72 61.27 57.17 58.15 

GSSFR 79.56 79.46 76.74 72.15 69.88 65.42 62.67 60.32 

 

   The experimental results are shown in Table 3 and Table 4. We find that, in most cases, our 
approach consistently outperforms Martinez’s method and NRBM over the two test face 
expressions. With the increase of occlusion size, both Martinez’s method and NRBM are no 
longer robust, especially when the occlusion size is large. Meanwhile, our proposed approach 
shows much more convincing performance since the parts-based sparse representation is 
robust to noise.  In addition, we found that, training GSSFR model over the whole dataset 
could reach a higher performance, where the reason is that it could get a better-fitted model 
with lower training error. Of course, it can lead to more precise similarity measure. Although 
this route is discarded in our experiment because of unfairness in comparison, it is still 
valuable in the future work, e.g. exploiting more unlabeled data from other dataset. 

4.3 Analysis of the experimental results of face recognition 
 
In Section 4.1, we perform few samples face recognition on two popular face datasets. We 
compare the proposed approach with the state-of-the-art approaches. As shown in Table 1 and 
Table 2, our approach presents convincing results. The reason accounting for its excellent 
performance is that, our approach incorporates the flexibility of parts-based representation and 
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the robustness of sparse representation scheme. We can learn more flexible parts. The derived 
similarity measure via regularized inference is a function over model parameter, hidden 
variable and observed variable, which encode high-level and more discriminative information 
useful in few samples face recognition. To further validate the effectiveness of the proposed 
approach on face recognition with random block occlusion, we perform another experiment in 
Section 4.2.  We consider two kinds of face expressions: neural and smile. As shown in Table 
3 and Table 4, our approach is robust to facial expressions, even when the face image is 
occluded. Especially, our approach is much more robust for occlusion with  large size than the 
other compared methods. The reason for this superiority is the robustness to noise of   sparse 
representation.   

5. Conclusion 
In this paper, we present a probabilistic generative model to learn parts-based sparse 
component analysis for face representation, where the components of each part are treated as a 
group and are regularized to be sparse in spatial domain. It incorporates the flexibility of 
parts-based scheme and robustness of sparse component analysis. To perform few samples 
face recognition, we derive the generative score space (i.e. feature mapping) from the 
proposed model and a similarity measure is defined over the derived score space. Also, our 
proposed approach can exploit the data distribution, which is well adapted to data, and the 
derived feature mapping and similarity measure encode information hidden in the observed 
data and model parameters. The proposed model reaches convergence within 20 (50) iterations, 
while MCFA and SSPCA require about 100 iterations to reach the convergence. The 
convincing experimental results demonstrate the effectiveness of our proposed generative 
score space based approach for the few samples face recognition task. However, this method 
can further benefit from the exploiting of large dataset. Moreover, the computational 
efficiency is a main limitation of the training procedure, when the method scales to larger 
dataset. These works will leave in the future. 
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