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Abstract 
 

Extreme learning machine (ELM) is emerging as a powerful machine learning method in a 
variety of application scenarios due to its promising advantages of high accuracy, fast learning 
speed and easy of implementation. However, how to select the optimal hidden layer of ELM is 
still an open question in the ELM community. Basically, the number of hidden layer nodes is a 
sensitive hyperparameter that significantly affects the performance of ELM. To address this 
challenging problem, we propose to adopt multiple kernel learning (MKL) to design a 
multi-hidden-layer-kernel ELM (MHLK-ELM). Specifically, we first integrate kernel 
functions with random feature mapping of ELM to design a hidden-layer-kernel ELM 
(HLK-ELM), which serves as the base of MHLK-ELM. Then, we utilize the MKL method to 
propose two versions of MHLK-ELMs, called sparse and non-sparse MHLK-ELMs. Both two 
types of MHLK-ELMs can effectively find out the optimal linear combination of multiple 
HLK-ELMs for different classification and regression problems. Experimental results on 
seven data sets, among which three data sets are relevant to classification and four ones are 
relevant to regression, demonstrate that the proposed MHLK-ELM achieves superior 
performance compared with conventional ELM and basic HLK-ELM. 
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1. Introduction 

Extreme learning machine(ELM), which is a fast learning method to train single hidden layer 
feedback neural networks(SLFNs)[1], has become a prevailing research topic in the past 
decades[2]. Considering that the conventional back propagation during training general neural 
networks suffers from slow training speed and local minima, ELM addresses these two 
disadvantages by randomizing weights and bias of hidden layer nodes. Then, ELM can 
quickly obtain the optimal weights by analytically solving optimization problems rather than 
iterative methods[3]. Besides the featured characteristic of fast training speed, ELM is also 
easy to implementation in both classification and regression tasks[4]. With above advantages, 
ELM has been successfully applied in many application scenarios[4,5,6]. 

However, how to select an optimal hidden layer in ELM is still an open question in the ELM 
community. Different numbers of hidden layer nodes induce different architectures of neural 
networks, resulting in varied capability of random feature representing. Hence, the 
determination of the number of hidden layer nodes significantly affects the overall 
performance of ELM. To address such technical challenge, there are two main ways in the 
state-of-the-art works. The first way is to find the concrete optimal number of hidden layer 
nodes. For example, [7] proposed evolutionary ELM(E-ELM) to find the optimal number of 
hidden layer nodes with evolutionary algorithms. Based on E-ELM, [8] further proposed 
self-adaptive evolutionary ELM(SaE-ELM) to obtain the optimal number of hidden layer 
nodes. Besides, incremental learning[9], self-adaptive[10] and swarm optimization[11] were 
used to solve this problem. Another way is to ensemble multiple approaches, which can both 
boost the performance and stability of machine learning[12]. [13] proposed a kind of adaptive 
ensemble model of ELMs to determine the optimal combination of various ELMs. Besides, 
multiple kernel learning was also applied to ELM, such as multiple kernel ELM 
(MK-ELM)[14] and multiple-kernel-learning-based ELM[15]. However, both these two 
multiple kernel learning methods focused on the selection of different types of kernels rather 
than the determination of hidden layer. 

Inspired by MK-ELM[14], we adopt multiple kernel learning (MKL) to design a 
multi-hidden-layer-kernel ELM (MHLK-ELM) in this paper. MHLK-ELM can effectively 
find the optimal linear combination of base hidden-layer kernels (HLKs) with different 
numbers of hidden layer nodes. Compared to the previous MK-ELM, MHLK-ELM makes two 
significant improvements. First, the base hidden-layer kernels of MHLK-ELM can effectively 
correlate different hidden layer nodes information. Second, the proposed method aims to 
obtain the optimal combination of different numbers of hidden layer nodes specified in 
multiple base hidden-layer kernels rather than the optimal combination of different kernels. 
Then, we utilize the MKL method to propose two versions of MHLK-ELMs, called sparse and 
non-sparse MHLK-ELM. Both two types of MHLK-ELMs can effectively find out the 
optimal linear combination of multiple HLK-ELMs for different classification and regression 
problems. Experimental results on seven classification and regression data sets demonstrate 
that the proposed MHLK-ELM achieves superior performance compared with MK-ELM, 
conventional ELM and basic HLK-ELM in terms of accuracy and stability. The contributions 
of this paper are detailed as follow: 

(1) We propose a novel multiple kernel framework of ELM. Given a specific classification 
or regression task, the proposed framework can effectively obtain the optimal linear 
combination of base hidden-layer kernels. 
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(2) According to the diverse norm constrict on combination coefficients γ , we present 
sparse and non-sparse MHLK-ELMs, which adopt 1l -norm and ql -norm ( 1)q >  
constraints on γ , respectively. 

The remaining of this paper is organized as follows. Section 2 reviews the background of 
extreme learning machine, extreme learning machine with kernel and multiple kernel learning. 
Then, Section 3 introduces the proposed MHLK-ELMs including sparse MHLK-ELM and 
non-sparse MHLK-ELM. After that, Section 4 presents the comparative experimental results 
to validate the effectiveness of the proposed method. Finally, Section 5 concludes this paper. 

2. Related Work 
In this section, we introduce the related knowledge about extreme learning machine, extreme 
learning machine with kernel and multiple kernel learning. 

2.1 Extreme learning machine 
Extreme learning machine(ELM) was first proposed by G. Huang[16]. Similar to the 
framework of SLFN, ELM is also a simple neural network with single hidden layer. The 
difference between them is that the hidden layer weights and bias of ELM are randomized and 
need not to tune. The unified formulation of ELM is as follow. 
 ( ) ( )*ELMf x h x β=   (1) 
where 1 2( ) [ ( ), ( ),..., ( )]Lh x h x h x h x=  is the hidden layer output respect to input sample dx ℜ . 
Specifically, ( )h x represents random feature mapping from input sample space dℜ  to 
randomized feature space Lℜ . Besides, | ( )| Tφβ ×∈ℜ  is the optimal output weights 
corresponding to randomized hidden layer weights. And the formulation of ( )ih x  is: 
 ( ) ( )i i ih x g x bω= +   (2) 
where ( )g ⋅  represents the active function, iω  and ib  are the weight and bias of i th hidden 
layer output, respectively. 

For N training samples, T  is a vector which represents their corresponding ground truth 
labels. The hidden layer output H  can be represented as follow: 

 

1
1 1

1

( ) ( )

( ) ( )

L

L
N N

h x h x

h x h x
H

 
 

=  
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  
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  (3) 

Besides, the optimal object of ELM is to minimize the training errors and the norm of output 
weights, which can improve the training accuracy and generalization performance of ELM, 
respectively. Here we mainly introduce the theory of ELM for m -class classification, and its 
objective function can be formulated as follow: 

 2 2
,

1

1 || || | | || . . ( ) ,
2 2

N
T T

F i i i i
i

Cmin s t h x t iβ ξ β ξ β ξ
=

+ = − ∀∑   (4) 

where ( )h ⋅  is the randomized hidden layer function, β  refers to the output weights. Besides, 
it  represents the class label of ix , which has some difference between classification and 

regression problem. In classification problem with ( 1)m m >  classes, it  is a m D−  vector 
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generated by m  output neurons, which represents m  class labels. But in regression problem, 
it  is the predict value outputted by a single output neuron towards input sample ix . 

Based on the randomized hidden layer weights and the object function, the optimal 
solution can be obtained by solving the quadratic programming(QP) problem. The optimal 
output weights β̂  is as follow: 

 1ˆ ( )T TIH HH T
C

β −= +   (5) 

Finally, the output function of ELM is: 

 1ˆ( ) ( ) ( ) ( )T T
ELM

If x h x h x H HH T
C

β −= = +   (6) 

2.2 Extreme learning machine with kernel 
Inspired by the kernel method in support vector machine(SVM), [17,18] first bring the kernel 
method to ELM. The kernel function for ELM is as follow: 
 T

ELM HHΩ =   (7) 
Specifically, 
 ( , ) ( ) ( ) ( , )ELM i j i j i jh x h x K x xΩ = ⋅ =   (8) 

where, kernel function ( , )K u v  is given, while feature mapping ( )h ⋅  need not to be known to 
users. So the decision function of kernel ELM is constructed: 
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where 1 Nx x  are the training samples, and x  refers to the testing sample. 

2.3 Multiple kernel learning 
Multiple kernel learning(MKL)[19] is one of the most popular method to find the optimal 
linear combination of different kernels, and it has been applied to many machine learning 
methods, such as SVM[20], fisher discriminant analysis(FDA)[21] and ELM[14,15]. In 
MKL[22], the optimal kernel is assumed to be the linear combination of a group of base 
kernels, so the optimal linear combination ( , , )k γ⋅ ⋅   is 

 
1 1

( , , ) ( , ), 1
k k

p p p
p p

k kγ γ γ
= =

⋅ ⋅ = ⋅ ⋅ =∑ ∑   (10) 

where ( , )( 1, , )pk p k⋅ ⋅ = ⋅⋅ ⋅  is the p th base kernel, and ( 1, , )p p kγ = ⋅⋅ ⋅  are their corresponding  
combination coefficients. And E.q(10) can be equivalently formulated as E.q(11): 
 1 1 2 2( ; ) [ ( ), ( ), , ( )]k kφ γ γ φ γ φ γ φ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   (11) 

where ( )( 1,..., )p p kφ ⋅ =  is the p th feature mapping corresponding to kernel ( , )pk ⋅ ⋅ , and ( , )φ γ⋅  
represents the feature mapping respecting to ( , , )k γ⋅ ⋅ . 

According to the different constrict on γ , there are two different linear combination results. 
E.q(10) described one situation that γ  is constricted with 1l  norm, which causes sparse 
combination of base kernels. Besides, we use the constrict on γ  with ( 1)ql q >  norm, which 
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can cause the non-sparse combination of base kernels. In Section 3, we will detail the concrete 
sparse and non-sparse multiple kernel learning algorithms for ELM. 

3. The Proposed Multiple Hidden-Layer-Kernel ELM 
In this section, we will present the details of the proposed MHLK-ELM. First, we propose a 
hidden-layer-kernel ELM(HLK-ELM), which integrate kernel functions[23] with random 
feature mapping of ELM. Then, we introduce two types of linear combinations of base 
HLK-ELMs, named sparse MHLK-ELM and non-sparse MHLK-ELM, based on different 
constricts towards combination coefficients γ . 

3.1 Hidden-Layer-Kernel ELM 
In this part, we propose a new learning method called HLK-ELM, which combines the 
advantages of kernel functions and random feature mapping. Typically, HLK-ELM consists of 
two steps as follows: First, according to E.q(3), we generate random feature mapping 

( ) LH x ℜ  regarding to different numbers of hidden layer nodes. Then, we use different kernel 
types ( ( ), ( ))i jK H x H x  to get a kernel matrix HΩ . 

 
1 1 1

1

( ( ), ( )) ( ( ), ( ))

( ( ), ( )) ( ( ),
 

( ))

N

H

N N N

K H x H x K H x H x

K H x H x K H x H x

 
 Ω =  
 
 



  



  (12) 

where ( 1,... )ix i N=  represents the i th training sample, and we term HΩ  as a hidden-layer 
kernel(HLK). Similar to E.q(10) in the kernel ELM, we can solve the optimal ˆ

Hβ  
corresponding to HΩ . Accordingly, we name an ELM with a HLK as HLK-ELM. 

By combining random feature mapping and kernel functions, HLK-ELM can obtain more 
abundant expression of initial samples. As for the specific kernel type, e.g, Gaussian kernel, 
the random feature mapping provides a simple but fast way to generate a suitable feature space 
according to the different numbers of hidden layer nodes. Hence, we propose a multiple kernel 
framework to find the optimal linear combination of base hidden-layer kernels. 

3.2 Sparse MHLK-ELM 
To obtain an efficient HLK-ELM with different HLKs, we extend MK-ELM proposed in [14] 
and propose a new method called MHLK-ELM, which can effective obtain the optimal linear 
combination of HLK-ELMs with various numbers of hidden layer nodes. The objective 
function of MHLK-ELM is formulated as: 
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Where 1(| ( ))| ... | ( )|)
1[ ,..., ] k T

p
φ φβ β β ⋅ + + ⋅ ×= ℜ , and | ( )|P T

p
φβ ⋅ ×ℜ  is the p th optimal solution 

corresponding to the p th base HLK ( )φ ⋅ . Similar to E.q(4), it  and iξ  represent the 
groundtruth label and training error respecting to ix , respectively. 
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As shown in E.q(13), the object function is to optimize the parameter of β  and kernel 
combination coefficients γ  jointly. In order to solve this object function, we first substitute 

( ; )ixφ γ  in E.q(13) using E.q(11). Thus, E.q(13) can be transformed to E.q(14) equivalently. 
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Then, we define β̂  as follow: 

 1 1 2 2
ˆ [ , ,..., ]k kβ γ β γ β γ β=   (15) 

According to E.q(15), the objective function can be equivalently rewritten as: 
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Note that E.q (16) is a jointly-convex optimization problem. Hence, we can solve this 
optimization problem through following steps: 

(1) Rewritting E.q(16) to a dual optimization problem: based on the KKT theorem, 
E.q(16) can be equivalently rewritten as: 

 
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2
p i
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where ( 1,..., )i i Nα =  and τ  are Lagrangian multiples. Besides, we omit the 
non-negative constrict towards pγ  in E.q(17) because pγ  keeps non-negative in the 
iterating progress. 

(2) Solving the (KKT) optimality conditions of E.q(17): according to the KKT conditions, 
we can get the following formulations by taking the derivatives of Eq.(17) respecting 
to β , γ  and ξ . 
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Then, letting two Lagrangian multiple items equal to zero, we can obtain E.q(21) and 
E.q(22) where iα  and τ  are non-zero. 
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=
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(3) Calculating the formulation of parameters γ  and α . By incorporating E.q(17)-(22), 
we can obtain the following formulation: 

 ( ( , ; ) ) TIK Y
C

γ α⋅ ⋅ + =   (23) 

where 
1
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k

T
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p
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corresponding label matrix. Besides, α in E.q(23) is the structural parameter of ELM, 
which can be determined by: 

 1( ( , ; ) ) TIK Y
C

α γ −= ⋅ ⋅ +   (24) 

Similarly, according to E.q(20), we can obtain: 
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Combining E.q(25) and 
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the final formulation of pγ : 
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E.q(26) is the formulation applied in updating progress, where the initial 
( 1... ) 1/p p k kγ = = , and ˆ|| ||p Fβ  can be calculated as follow: 

 
, 1 , 1

ˆ|| || ( , )
T N

p F p it js p i j
s t i j

K x xβ γ α α
= =

= ∑ ∑   (27) 

From E.q(26) and E.q(27), it is obvious that pγ  is keeping non-negative in updating 
progress because ˆ|| ||p Fβ  and initial pγ  are both non-negative. 

Based on the above formulations, the target optimization problem can be solved by 
alternatively optimizing α  and pγ . Moreover, the 1l  norm constrict on pγ  induces sparse 
combination coefficients. Accordingly, we name this method as the sparse MHLK-ELM. The 
pseudo code of the sparse MHLK-ELM is given in Algorithm 1. 

In Algorithm 1, LN  and TypeK  refer to the number of hidden layer nodes and the kernel type 
of base HLKs, respectively. 

3.3 Non-Sparse MHLK-ELM 
In some literature[24,25], non-sparse MKL algorithms generally performed better than sparse 
ones. Compared to sparse MKL algorithms, non-sparse MKL algorithms[26] can keep the 
information of every base kernel with non-sparse constricts on pγ . Until now, non-sparse 
MKL algorithms have been successfully applied to many machine learning methods[21,27]. 
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Algorithm 1 Sparse MHLK-ELM 
Input: LN , TypeK , C , and Y  
Output: α and γ  
1. Generate (.;.; )HLKK γ  based on LN  and TypeK  
2. Initialize the 0γ γ=  and 0t t=  
3. repeat 

4. Calculating 
1

(.;.; )
m

t
p p

p
K Kγ γ

=

= ∑   

5. Updating 1tα +  by E.q(24) 
6. Updating 1tγ +  according to E.q(26) 
7. 1t t= +  
8. until 1 4x |ma | 1t t eγ γ − −− ≤  
9. tα α= , tγ γ=  

Typically, the parameter pγ  in the non-sparse MHLK-ELM is constricted by ( 1)ql q >  
norms[22,28,29]. Hence, the objective function of the non-sparse MHLK-ELM can be 
formulated as 
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According to E.q(25), we have 
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Based on equations (30) and (31), pγ  is determined by 
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Algorithm 2 Non-sparse MHLK-ELM 
Input: LN , TypeK , q , C , and Y  
Output: α and γ  
10. Generate (.;.; )HLKK γ  based on LN  and TypeK  
11. Initialize the 0γ γ=  and 0t t=  
12. repeat 

13. Calculating 
1

(.;.; )
m

t
p p

p
K Kγ γ

=

= ∑   

14. Updating 1tα +  by E.q(24) 
15. Updating 1tγ +  according to E.q(32) 
16. 1t t= +  
17. until 1 4x |ma | 1t t eγ γ − −− ≤  
18. tα α= , tγ γ=  

4. Experiment Results and Analysis 

4.1 Experimental Setup 
To demonstrate the advantages of the proposed method, we carry out two groups of 
comparative experiments as follows: (1) Since the goal of the proposed method is to find the 
optimal linear combination of base hidden-layer kernels regarding to different numbers of 
hidden layer nodes, we compare the proposed method with base ELMs and HLK-ELMs. 
Specifically, we select the best performance of base ELMs and HLK-ELMs, which named as 
best ELM and best MHLK-ELM, respectively.  Besides, we show mean ELM and mean 
HLK-ELM by computing the mean performance of base ELMs and HLK-ELMs. (2) To 
further show the superior performance of the proposed method, we compare it with MK-ELM, 
which is the typical method of finding the optimal linear combination of base kernel ELMs.  

Furthermore, we experiment in both classification and regression problems to verify the 
scalability of the proposed method. Specifically, the regularization parameter C  is selected 
from 3 2 4[10 ,10 , ,10 ]− −

  by 5-fold cross validation on the training data sets for five times. 
Regarding kernel matrices used in the base HLK-ELM method, we use four different kernels 
as follows: 

(1) Gaussian kernel 
 2( , ) ( || || / ),i j i jk x x exp x x σ= − −   (33) 

(2) Laplacian kernel 
 ( , ) ( || || / ),i j i jk x x exp x x σ= − −   (34) 

(3) Inverse square distance kernel 
 2( , ) 1/ ((|| || / ) 1),i j i jk x x x x σ= − +   (35) 

(4) Inverse distance kernel 
 ( , ) 1/ ((|| || / ) 1),i j i jk x x x x σ= − +   (36) 

where σ  is kernel parameter. For each base HLK-ELM of MHLK-ELM and base kernel ELM 
of MK-ELM, We set nine kernel parameters t

02 ( { 4, 3, 2, 1,0,1,2,3,4})tσ ∈ − − − − , where 
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0σ  is set to be the average pairwise Euclidean distance among samples. Moreover, the 
numbers of hidden layer nodes used in the base ELMs and HLK-ELMs are selected from 200 
to 800 with a step size 50 in classification problems. Similarly, the numbers of hidden layer 
nodes used in the base ELMs and HLK-ELMs are selected from 10 to 200 with a step size 10 
in regression problems. 

4.2 Data Sets 
To compare the performance of different methods, we carry out comparative experiments 
using a variety of data sets including classification and regression data sets. Furthermore, we 
ran 10 times of independent experiments on each data set to have the average results with 
respect to different methods. In each experiment trail, 60% of a data set is selected as the 
training data set, otherwise as the testing data set. 

(1) Classification data sets 
We select three classification data sets from UCI[30] with different numbers of class labels, 

feature dimensions and data sizes. The detailed information of these data sets are showed in 
Table 1. 

 
Table 1. Summary of classification data sets 

Data sets # Training #Testing #Feature dimension #Classes 
Glass1 128 86 9 6 
Ecoli2 202 134 7 8 

Vowel3 528 462 10 11 
  
(2) Regression data sets 
For evaluating the performance of the proposed method addressing regression problems, 

we adopt four data sets from UCI[30] and LIACC[31] for experiments. Similar to the 
classification data sets, these data sets are also different in both data size and feature dimension. 
Table 2 shows the detailed information about the four data sets. 

 
Table 2. Summary of regression data sets 

Data sets # Training #Testing #Feature dimension 
Auto price4 95 64 16 

Machine Cpu4 125 84 10 
Housing5 304 202 14 

Stock4 569 380 9 
Note that the output of each data record in regression data sets is normalized to a range of 

[-1,1]. 
 
 
 

1 http://archive.ics.uci.edu/ml/datasets/Glass+Identification  
2 http://archive.ics.uci.edu/ml/datasets/Ecoli 
3 http://archive.ics. uci.edu/ml/datasets/Connectionist+Bench+%28Vowel+Recognition+-+Deterding+Data%29  
4 http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html  
5 http://mlearn.ics.uci.edu/databases/housing/  

                                                        

http://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://archive.ics.uci.edu/ml/datasets/Ecoli
http://www.dcc.fc.up.pt/%7Eltorgo/Regression/DataSets.html
http://mlearn.ics.uci.edu/databases/housing/
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4.3 Experimental Results with Sparse MHLK-ELM 
4.3.1 Performance Comparison on Classification Problems 
 

Table 3. Performance comparison of different methods on Glass, Ecoli and Vowel data sets. The two 
rows of each cell represent ACC ± standard derivation and mAP ± standard derivation, respectively. 

The ACC and mAP on Vowel is equal. 
Data 
sets 

Kernel 
type 

 The 
proposed 

MHLK-ELM 

 
MK-ELM 

Best 
HLK-ELM 

Best 
ELM 

Mean 
HLK-ELM 

Mean 
ELM 

Glass 

Gaussian ACC 69.07 0.18±  67.67 0.07±   68.14 0.12±   68.49 0.09±   67.53  66.97  
mAP 57.89 0.27±  51.37 0.19±  56.96 0.22±  57.00 0.27±  55.91 53.66  

Laplace ACC 70.70 0.15±   60.00 0.24±   71.40 0.30±   68.02 0.26±   70.23  66.78  
mAP 58.38 0.39±  42.32 0.07±  59.85 0.31±  55.89 0.33±  57.91 53.65  

Inverse 
Square 

ACC 69.07 0.33±  71.16 0.07±   68.37 0.29±   67.91 0.12±   67.57  66.90  
mAP 59.33 0.52±  59.60 0.18±  57.44 0.16±  55.49 0.17±  56.74  53.61 

Inverse ACC 72.09 0.11±  69.42 0.10±  71.74 0.11±  68.49 0.13±  71.01 67.04  
mAP 59.43 0.28±  51.04 0.31±  59.82 0.21±  55.38 0.31±  58.90  53.69  

Ecoli 

Gaussian ACC 86.81 0.06±  86.00 0.04±  86.59 0.07±  85.41 0.09±   86.35  85.13  
mAP 69.04 0.63±  68.79 0.48±   69.15 0.59±   65.97 0.53±  68.85  65.64  

Laplace ACC 86.00 0.05±   85.33 0.09±  84.74 0.07±  85.41 0.09±   84.04   85.23   
mAP 67.11 0.50±   67.16 0.54±   67.15 0.50±   66.19 0.55±   66.04   65.83   

Inverse 
Square 

ACC 86.96 0.06±   86.15 0.04±   86.30 0.07±   85.41 0.10±   85.89  85.15   
mAP 68.93 0.52±   68.60 0.47±   68.89 0.57±   66.33 0.51±   68.52   65.71  

Inverse ACC 86.52 0.07±   86.15 0.05±   85.48 0.04±   85.48 0.10±   85.15   85.21  
mAP 68.12 0.51±   65.58 0.55±   67.75 0.53±   66.29 0.54±   67.52   65.72   

Vowel 

Gaussian ACC/mAP 62.12 0.01±   64.07 0.03±   60.41 0.07±   52.01 0.03±   59.72   50.33   
Laplace ACC/mAP 62.58 0.02±   64.29 0.02±   60.97 0.08±   52.60 0.04±   60.42   50.49   
Inverse 
Square ACC/mAP 61.88 0.03±   64.07 0.03±   60.52 0.08±   51.36 0.02±   59.77   50.34   

Inverse ACC/mAP 62.60 0.02±   64.29 0.02±   61.28 0.04±   51.84 0.01±   60.39   50.11  
For classification problem, the main performance evaluation are accuracy(ACC) and mean 
average precision(mAP), both of the two metrics are used in this paper. And the concrete 
meaning of them are as follows: 

 ,TP TNACC
TP TN FN FP

+
=

+ + +
  (37) 

1

1 .
m

i

TPmAP
m TP FP=

=
+∑                                     (38) 

Besides, we compare the robustness by calculating the standard derivation of ACC and mAP. 
The experiment results of 10 times random experiments are shown in Table 3, from which 

we can clearly see the performance on classification tasks with the proposed method. 
Especially, because the number of every class in the Vowel data set is same , the experiment 
results of ACC and mAP on Vowel are equal. 
4.3.2 Performance Comparison on Regression Problems 
Different from using ACC and mAP as performance evaluation, the regression problem 
concerns the root mean square error(RMSE) between the desired output and the prediction 
output. And the concrete meaning of RMSE is as follow: 
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RMSE t x t x
N =

−∑   (39) 

 
Table 4. Performance comparison of different method on Auto price, Housing, Machine Cpu and 

Stock data sets. Each cell represent RMSE ± standard derivation corresponding to specific kernel type. 
Data 
sets 

Kernel 
type 

The proposed 
MHLK-ELM 

MK-ELM Best 
HLK-ELM 

Best 
ELM 

Mean 
HLK-ELM 

Mean 
ELM 

Auto 
price 

Gaussian 0.2258 0.0076±   0.2177 0.0068±   0.2540 0.0056±   0.2461 0.0021±   0.2883   0.2787   
Laplace 0.2209 0.0041±   0.2916 0.0049±   0.2427 0.0025±   0.2441 0.0028±   0.2946   0.2959   
Inverse 
Square 

0.2228 0.0060±   0.2085 0.0060±   0.2504 0.0037±   0.2345 0.0017±  0.2848   0.2794   

Inverse 0.2236 0.0073±   0.3066 0.0053±   0.2547 0.0056±   0.2417 0.0026±   0.2880   0.2817   

Housing 

Gaussian 0.2541 0.0003±   0.2628 0.0006±   0.3021 0.0005±   0.3112 0.0010±   0.3268   0.3304   
Laplace 0.2380 0.0002±   0.2623 0.0006±   0.2761 0.0010±   0.2970 0.0007±   0.3172   0.3320   
Inverse 
Square 

0.2491 0.0003±   0.2634 0.0005±   0.2885 0.0010±   0.3122 0.0016±   0.3170   0.3304   

Inverse 0.2448 0.0003±   0.2734 0.0006±   0.2779 0.0003±   0.30528 0.0003±   0.3131  0.3302   

Machine 
Cpu 

Gaussian 0.2258 0.0132±   0.2320 0.0198±   0.2910 0.0204±   0.2570 0.0151±   0.3727   0.2793   
Laplace 0.2244 0.0137±   0.3103 0.0177±   0.2860 0.0166±   0.2653 0.0184±   0.3103   0.2840   
Inverse 
Square 

0.2221 0.0139±   0.2113 0.0182±   0.2811 0.0191±   0.2631 0.0168±   0.2988   0.2794   

Inverse 0.2078 0.0140±   0.6944 0.0022±   0.2561 0.0171±   0.2596 0.0166±   0.2763   0.2788   

Stock 

Gaussian 0.0602 0.0000±   0.0552 0.0000±   0.0704 0.0000±   0.1238 0.0001±   0.1498   0.2247   
Laplace 0.0592 0.0000±   0.2080 0.0030±   0.0721 0.0001±   0.1402 0.0017±   0.1919   0.2312   
Inverse 
Square 

0.0588 0.0000±   0.0542 0.0000±   0.0676 0.0001±   0.1215 0.0003±   0.1470   0.2273   

Inverse 0.0610 0.0000±   0.1283 0.0001±   0.0704 0.0000±   0.1202 0.0002±   0.1340   0.2313   
where ( )it x and ( )idt x  represent the predict target value and the real target value of ith sample, 
respectively. 

The performance comparative results on four real world data sets about regression 
problems are shown in Table 4. Besides, we also compare the stability by calculating the 
standard derivation of 10 times random experiments, which are also described in Table 4. 
4.3.3 Result Analysis 
From the experiments results in classification and regression data sets, we can clearly compare 
the performance of the proposed method and conclude as follow: 

(1) For classification tasks, sparse MHLK-ELM can obtain better performance than 
MK-ELM both on Glass and Ecoli data sets, while MK-ELM perform slightly better 
than sparse MHLK-ELM on Vowel data set. Compared with base HLK-ELMs and 
base ELMs, MHLK-ELM can obtain comparable even slightly better performance 
than single best ELM and single best HLK-ELM. Besides, the classification 
performance of MHLK-ELM is much better than mean ELM and mean HLK-ELM. 

(2) For regression tasks, from Table 4 we can see that the proposed method can obtain the 
best performance on four data sets among almost all the methods. Although MK-ELM 
with base Gaussian and Inverse Square kernels perform slightly better than 
MHLK-ELM, MHLK-ELM can obtain more stable effect than MK-ELM. Table 3 and 
Table 4 show that the proposed method may perform better on regression tasks than 
classification tasks. 
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(3) For different data sets, ELM and HLK-ELM exist performance difference. Specifically, 
for the seven data sets, ELM perform slightly better than HLK-ELM on Auto price and 
Machine cpu data set, while HLK-ELM is better than ELM on other data sets, 
especially on the Vowel data set.  But for all these data sets, MHLK-ELM can obtain 
the comparable results to the better one between single best ELM and single best 
HLK-ELM, which further verify the effectiveness and stability of the proposed 
method. 

(4) For different kernel types, two multiple kernel methods perform various superiority. 
MK-ELM can obtain better performance with Gaussian and Inverse Square kernels, 
while MHLK-ELM perform better with Laplace and Inverse kernels. Besides, there 
does not exist absolute best kernel type for all data sets. But for specific data sets, there 
exist better kernel type. Indeed, trying to find a linear combination of different kernels 
will be another choice for selecting the optimal kernel type corresponding to specific 
data set. 

4.4 Experimental Results with Non-Sparse MHLK-ELM 
Sparse MHLK-ELM can effectively select the kernels which contribute more to the task, but it 
may disable part of effective kernels. So sufficiently using all base kernels information is 
necessary in some situations. Non-sparse MHLK-ELM, which ensures combination 
coefficients 0( 1,..., )i i kγ > =  by controlling the ( 1)ql q >  norm constrict on iγ , can obtain 
multiple kernel result with complete base kernels information. 

In order to study the impact of various q value, we experiment with various q  values on 
three classification data sets. According to the setting in [21], the parameter q  which controls 
the sparsity of base kernel combination is taken from {32 / 31;16 /15;8 / 7;4 / 3;2;4;8;16} . 
Besides, we add 1q =  in this paper to better compare the performance between sparse 
MHLK-ELM and non-sparse MHLK-ELM. And the other setting are same to the previous 
experiments. 

The results of experiments are shown in Fig. 1, from which we can conclude as follows: 
(1) For sparse and non-sparse MHLK-ELM, there are not very huge performance 

difference on three classification data sets between the two methods. On the whole, the 
non-sparse MHLK-ELM can obtain slightly better performance than sparse 
MHLK-ELM. 

(2) For non-sparse MHLK-ELM, the value of q  will impact the classification 
performance. But there are not obvious tendency indicating the optimal   value, which 
may be another research point in the future work. 

5. Conclusion 
In this paper, we have proposed a multi-hidden-layer-kernel ELM called MHLK-ELM 

based on multiple kernel learning (MKL) to select an optimal linear combination of base 
hidden-layer kernels. Specifically, we first integrate kernel functions with random feature 
mapping of ELM to design a hidden-layer-kernel ELM (HLK-ELM), which serves as the base 
of MHLK-ELM. Then, we utilize the MKL method to propose two versions of MHLK-ELMs, 
called sparse and non-sparse MHLK-ELMs. Experimental results demonstrate that both two 
types of MHLK-ELMs can effectively find out the optimal linear combination of multiple 
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HLK-ELMs for different classification and regression problems. Besides, we analyze the 
impacts of different types of norms and different kernel types, which are two interesting 
research topics in our future work. 

  

  

  
Fig. 1. Illustration of classification performance of the proposed method with different norms and 

kernel types on Glass, Ecoli and Vowel data sets 
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