• Title/Summary/Keyword: sparse data structure

Search Result 50, Processing Time 0.02 seconds

EMPIRICAL BAYES THRESHOLDING: ADAPTING TO SPARSITY WHEN IT ADVANTAGEOUS TO DO SO

  • Silverman Bernard W.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.1-29
    • /
    • 2007
  • Suppose one is trying to estimate a high dimensional vector of parameters from a series of one observation per parameter. Often, it is possible to take advantage of sparsity in the parameters by thresholding the data in an appropriate way. A marginal maximum likelihood approach, within a suitable Bayesian structure, has excellent properties. For very sparse signals, the procedure chooses a large threshold and takes advantage of the sparsity, while for signals where there are many non-zero values, the method does not perform excessive smoothing. The scope of the method is reviewed and demonstrated, and various theoretical, practical and computational issues are discussed, in particularly exploring the wide potential and applicability of the general approach, and the way it can be used within more complex thresholding problems such as curve estimation using wavelets.

Fusing Algorithm for Dense Point Cloud in Multi-view Stereo (Multi-view Stereo에서 Dense Point Cloud를 위한 Fusing 알고리즘)

  • Han, Hyeon-Deok;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.798-807
    • /
    • 2020
  • As technologies using digital camera have been developed, 3D images can be constructed from the pictures captured by using multiple cameras. The 3D image data is represented in a form of point cloud which consists of 3D coordinate of the data and the related attributes. Various techniques have been proposed to construct the point cloud data. Among them, Structure-from-Motion (SfM) and Multi-view Stereo (MVS) are examples of the image-based technologies in this field. Based on the conventional research, the point cloud data generated from SfM and MVS may be sparse because the depth information may be incorrect and some data have been removed. In this paper, we propose an efficient algorithm to enhance the point cloud so that the density of the generated point cloud increases. Simulation results show that the proposed algorithm outperforms the conventional algorithms objectively and subjectively.

Spectral Clustering with Sparse Graph Construction Based on Markov Random Walk

  • Cao, Jiangzhong;Chen, Pei;Ling, Bingo Wing-Kuen;Yang, Zhijing;Dai, Qingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2568-2584
    • /
    • 2015
  • Spectral clustering has become one of the most popular clustering approaches in recent years. Similarity graph constructed on the data is one of the key factors that influence the performance of spectral clustering. However, the similarity graphs constructed by existing methods usually contain some unreliable edges. To construct reliable similarity graph for spectral clustering, an efficient method based on Markov random walk (MRW) is proposed in this paper. In the proposed method, theMRW model is defined on the raw k-NN graph and the neighbors of each sample are determined by the probability of the MRW. Since the high order transition probabilities carry complex relationships among data, the neighbors in the graph determined by our proposed method are more reliable than those of the existing methods. Experiments are performed on the synthetic and real-world datasets for performance evaluation and comparison. The results show that the graph obtained by our proposed method reflects the structure of the data better than those of the state-of-the-art methods and can effectively improve the performance of spectral clustering.

Shear resistance of steel-concrete-steel deep beams with bidirectional webs

  • Guo, Yu-Tao;Nie, Xin;Fan, Jian-Sheng;Tao, Mu-Xuan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.299-313
    • /
    • 2022
  • Steel-concrete-steel composite structures with bidirectional webs (SCSBWs) are used in large-scale projects and exhibit good mechanical performances and constructional efficiency. The shear behaviors of SCSBW deep beam members in key joints or in locations subjected to concentrated forces are of concern in design. To address this issue, experimental program is investigated to examine the deep-beam shear behaviors of SCSBWs, in which the cracking process and force transfer mechanism are revealed. Compared with the previously proposed truss model, it is found that a strut-and-tie model is more suitable for describing the shear mechanism of SCSBW deep beams with a short span and sparse transverse webs. According to the experimental analyses, a new model is proposed to predict the shear capacities of SCSBW deep beams. This model uses strut-and-tie concept and introduces web shear and dowel action to consider the coupled multi mechanisms. A stress decomposition method is used to distinguish the contributions of different shear-transferring paths. Based on case studies, a simplified model is further developed, and the explicit solution is derived for design efficiency. The proposed models are verified using experimental data, which are proven to have good accuracy and efficiency and to be suitable for practical application.

Decomposition of Interference Hyperspectral Images Based on Split Bregman Iteration

  • Wen, Jia;Geng, Lei;Wang, Cailing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3338-3355
    • /
    • 2018
  • Images acquired by Large Aperture Static Imaging Spectrometer (LASIS) exhibit obvious interference stripes, which are vertical and stationary due to the special imaging principle of interference hyperspectral image (IHI) data. As the special characteristics above will seriously affect the intrinsic structure and sparsity of IHI, decomposition of IHI has drawn considerable attentions of many scientists and lots of efforts have been made. Although some decomposition methods for interference hyperspectral data have been proposed to solve the above problem of interference stripes, too many times of iteration are necessary to get an optimal solution, which will severely affect the efficiency of application. A novel algorithm for decomposition of interference hyperspectral images based on split Bregman iteration is proposed in this paper, compared with other decomposition methods, numerical experiments have proved that the proposed method will be much more efficient and can reduce the times of iteration significantly.

Banded vector heterogeneous autoregression models (밴드구조 VHAR 모형)

  • Sangtae Kim;Changryong Baek
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.529-545
    • /
    • 2023
  • This paper introduces the Banded-VHAR model suitable for high-dimensional long-memory time series with band structure. The Banded-VHAR model has nonignorable correlations only with adjacent dimensions due to data features, for example, geographical information. Row-wise estimation method is adapted for fast computation. Also, two estimation methods, namely BIC and ratio methods, are proposed to estimate the width of band. We demonstrate asymptotic consistency of our proposed estimation methods through simulation study. Real data applications to pm2.5 and apartment trading volume substantiate that our Banded-VHAR model outperforms traditional sparse VHAR model in forecasting and easy to interpret model coefficients.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

Structural Damage Assessment Using Transient Dynamic Response (동적과도응답을 사용한 구조물의 손상진단)

  • 신수봉;오성호;곽임종;고현무
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.395-404
    • /
    • 2000
  • A damage detection and assessment algorithm is developed by measuring accelerations at limited locations of a structure under forced vibrations. The developed algorithm applies a time-domain system identification (SI) method that identifies a structure by solving a linearly constrained nonlinear optimization problem for optimal structural parameters. An equation error of the dynamic equilibrium of motion is minimized to estimate optimal parameters. An adaptive parameter grouping scheme is applied to localize damaged members with sparse measured accelerations. Damage is assessed in a statistical manner by applying a time-windowing technique to the measured time history of acceleration. Displacements and velocities at the measured degrees of freedom (DOF) are computed by integrating the measured accelerations. The displacements at the unmeasured DOF are estimated as additional unknowns to the unknown structural parameters, and the corresponding velocities and accelerations we computed by a numerical differentiation. A numerical simulation study with a truss structure is carried out to examine the efficiency of the algorithm. A data perturbation scheme is applied to determine the thresholds lot damage indices and to compute the damage possibility of each member.

  • PDF

SEJONG OPEN CLUSTER SURVEY (SOS). 0. TARGET SELECTION AND DATA ANALYSIS

  • Sung, Hwankyung;Lim, Beomdu;Bessell, Michael S.;Kim, Jinyoung S.;Hur, Hyeonoh;Chun, Moo-Young;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.103-123
    • /
    • 2013
  • Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBV I system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - MV relations, Sp - $T_{eff}$ relations, Sp - color relations, and $T_{eff}$ - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

Gradient field based method for segmenting 3D point cloud (Gradient Field 기반 3D 포인트 클라우드 지면분할 기법)

  • Vu, Hoang;Chu, Phuong;Cho, Seoungjae;Zhang, Weiqiang;Wen, Mingyun;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.733-734
    • /
    • 2016
  • This study proposes a novel approach for ground segmentation of 3D point cloud. We combine two techniques: gradient threshold segmentation, and mean height evaluation. Acquired 3D point cloud is represented as a graph data structures by exploiting the structure of 2D reference image. The ground parts nearing the position of the sensor are segmented based on gradient threshold technique. For sparse regions, we separate the ground and nonground by using a technique called mean height evaluation. The main contribution of this study is a new ground segmentation algorithm which works well with 3D point clouds from various environments. The processing time is acceptable and it allows the algorithm running in real time.