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Abstract 
 

Spectral clustering has become one of the most popular clustering approaches in recent years. 
Similarity graph constructed on the data is one of the key factors that influence the 
performance of spectral clustering. However, the similarity graphs constructed by existing 
methods usually contain some unreliable edges. To construct reliable similarity graph for 
spectral clustering, an efficient method based on Markov random walk (MRW) is proposed in 
this paper. In the proposed method, the MRW model is defined on the raw k-NN graph and the 
neighbors of each sample are determined by the probability of the MRW. Since the high order 
transition probabilities carry complex relationships among data, the neighbors in the graph 
determined by our proposed method are more reliable than those of the existing methods. 
Experiments are performed on the synthetic and real-world datasets for performance 
evaluation and comparison. The results show that the graph obtained by our proposed method 
reflects the structure of the data better than those of the state-of-the-art methods and can 
effectively improve the performance of spectral clustering. 
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1. Introduction 

Clustering, also called cluster analysis, is widely used in many research fields, including 
multimedia retrieval, pattern recognition and data mining [1-3]. Many clustering algorithms 
have been developed over the past decades. Among these algorithms, spectral clustering, as a 
promising method, has recently attracted considerable attention [4-7]. Spectral clustering 
reveals the cluster structures of data using eigenvectors of the Laplacian graph and can stably 
detect nonconvex patterns and nonlinearly separable clusters [5, 6]. It is considered as one of 
the most promising clustering techniques because of its superior performance compared to 
traditional clustering algorithms when utilized on certain challenging datasets [8]. 

Spectral clustering is a clustering method based on graph theory. Given a data set 
{ }1 2, ,= ⊂ℜ l

nv v vV , spectral clustering first constructs a similarity graph with the data as 
vertices and the similarity among the data as the weight of the edges. Then, the eigenvectors of 
a Laplacian matrix corresponding to the similarity graph is computed. Finally, clustering result 
is obtained by running a traditional clustering method (e.g., k-means) on the new data mapped 
by the eigenvectors. The objective of spectral clustering is to obtain new data that can be 
clustered more easily in the eigenspace constructed by the Laplacian matrix. Since the 
Laplacian matrix is computed in accordance with the similarity graph, the construction of the 
similarity graph plays a key role in spectral clustering. The most common similarity graph is a 
full graph in which each vertex is connected to all others. However, since the pairwise 
similarity between two faraway data points is less reliable than that between two neighbors, 
the full graph usually contains some unreliable edges that degrade the performance of spectral 
clustering. It has been shown that the sparse similarity graph can help to improve the 
performance of spectral clustering [5, 9]. Determining the neighbors is the core for 
constructing the sparse graph. Several methods for constructing sparse graphs currently have 
been proposed, with two most classical methods being k -nearest neighbor ( k -NN) and 
ε -neighborhood [4]. In a k-NN graph a vertex is only connected to its k nearest neighbors, 
whereas points whose pairwise distances (similarity) are smaller (larger) than ε are connected 
in ε-neighborhood graph. Classical sparse graphs can effectively reduce the effect caused by 
unreliable pairwise similarities from faraway vertices. However, in many cases, the pairwise 
similarities are not always accurate, especially for data with an elongated structure. Hence, 
classical sparse graphs often contain a number of unreliable relationships (an example is 
shown in Fig. 1(b)). A method based on the dominant set was subsequently proposed to 
overcome this difficulty [10]. In its graph, each vertex connects the vertices in the dominant 
set of its k -NN. For considering the affinities among the neighbors, this method is more 
robust to errors and outliers based on the pairwise similarities. However, the dominant 
neighborhood is inclined to make the local density samples condensing to an isolated clique 
from the non-uniform samples, as shown in Fig. 2(c). In addition, several methods for 
constructing graphs have been proposed for other applications. Wang et al. [11] proposed a 
graph structure method  named k-regular nearest neighbor graph and applied it to the 
manifold-ranking based retrieval framework. Li proposed the k-edge connected neighborhood 
graph, and presented two constructing methods named k-MST [12] and Min-k-ST [13, 14]. In 
[15], a method named b-matching was proposed to guarantee the number of edges of each 
vertex to be equal. Cheng et al. [16] proposed a method in which graphs are constructed using 
datum-wise sparse reconstructions of samples via 1l -norm minimization. The methods 
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outlined above are designed for different tasks, but, to the best of our knowledge there is no 
evidence to show which graph is the best for spectral clustering. Consequently, a good graph 
construction method is still needed.  

Markov random walk (MRW) can be useful for this purpose because its model has a close 
relation with graphs. Given a graph and a starting point, we can randomly select one of its 
neighbors and move to this neighbor; then, we can select this neighbor as the next starting 
point and repeat the above process. In this way, the sequence of points selected is a random 
walk on the graph. In fact, Markov chains can be viewed as random walks on a weighted graph 
[26]. Recently, the MRW model has been explored as a similarity measure and applied in 
many fields [17, 18, 21, 32, 33]. White and Smyth [27] explored average first-passage time as 
a similarity measure between vertices in the graph. Kondor and Lafferty [28] defined a graph 
regularization model that can be used to compute similarities between nodes. Newman [29] 
suggested a random-walk model to compute a “betweenness centrality” of a given node in a 
graph. Faloutsos et al. [30] extracted the “most relevant” connected subgraph relating two 
nodes of interest, based on electrical flows. Also, Palmer and Faloutsos [31] defined a 
similarity function based on random walks and electrical networks, and showed that this 
quantity provides a reasonably good measure for clustering and classifying categorical 
attributes. In [32], several other quantities, such as the average commute time and the 
pseudoinverse of the Laplacian matrix of the graph, were investigated to provide similarities 
between any pair of nodes. In addition, the transition probabilities of the MRW were used to 
define a metric among the points [17, 18]. In particular, the points are said to be more close if 
they have more similar probability distributions over all the points. The transition matrix was 
used as a smoothing kernel to improve the similarity metric [19]. Random-walk models on a 
graph have been proved effective in exploring the global relationships among the vertices.  

However, these paths with many steps are not helpful to determine neighbors. As shown in 
Fig. 1 (f), the neighbors determined by paths with 100 steps are not reliable. In view of this 
fact, this paper proposes to determine the neighbors of each vertex using only the paths in its 
neighborhood. In our proposed method, the probability of MRW after performing suitable 
steps is utilized to determine the neighbors in the sparse graph. We assume that iv  is closer to 

jv  if the t-step probability of the MRW from iv  to jv  is higher. Also, the t-step probabilities 
of the MRW are adopted to determine the k -NN in this work. Due to the robustness of the 
transition probabilities of the MRW, our proposed method can not only effectively remove the 
unreliable neighbors, but also avoid, to an extent, the condensing degradation. It should be 
noted that our proposed method is different from the method presented in [20] that uses the 
MRW to improve spectral clustering. In our method, the probability of the MRW after 
performing suitable steps is utilized to determine the neighbors in sparse graphs, whereas in 
[20] the stable state of the MRW is used as an affinity matrix. As shown in Fig. 1, the 
probability of the MRW carries different information about neighbors after different steps. 
The probability after performing suitable steps can reflect the good relations of the 
neighborhood and the stable state carries a small amount of information about neighbors. 
There is also an inherent difference between our proposed method and the method presented in 
[21]. In [21], the MRW is utilized to intuitively interpret spectral clustering. By contrast, in our 
method, the MRW is used to measure the relationships among data. 

The rest of this paper is organized as follows. The backgrounds of MRW and spectral 
clustering are reviewed in Section 2. In Section 3, we propose the construction of k-NN graph 
based on MRW. Experiment results on some datasets are presented in Section 4. Finally, some 
concluding remarks are given in Section 5. 
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2. Spectral Clustering and Markov Random Walk 

2.1 Spectral clustering 
Spectral clustering is a class of methods that is based on eigen-decomposition of graph affinity 
matrices. Given a set of data points { }1, ,=  nS x x , a weighted graph ( , )=G V E  is first 

constructed in which every vertex corresponds to a point in S  and each edge is weighted by 
the similarity between the connected points. The Laplacian graph L  [22] is then derived from 
the adjacency matrix of G , and the eigenvectors of L  are computed. Finally, the traditional 
K -means method is applied to the low-dimensional representations of the original data. Many 
spectral clustering algorithms based on the above procedures have been proposed [3-7]. 

In this paper, the Ng-Jordan-Weiss (NJW) algorithm [6] is briefly reviewed and 
summarized in Algorithm 1 for completeness. It is noted that the proposed graph can also be 
used in any other spectral clustering algorithm. 

 
Algorithm 1: NJW spectral clustering algorithm 
 

Input: Dataset { }1, ,=  nS x x  inℜl  and the number of clusters k . 

Output: k -way partition of the input data. 
Step 1: Construct an affinity matrix A using the following Gaussian kernel function: 

2

2

| | | |
exp( )        f or  ,

0                          f or  ,

i j

i j

x x
i jA
i j

δ

 − −
 ≠= 
 =

                         (1) 

where δ is a scale parameter to control how fast the similarity attenuates with the distance 
between the data points ix  and jx . 

Step 2: Compute the normalized affinity matrix L=D-1/2A D-1/2, where D is the diagonal 
matrix with

1=
=∑ n

ii ijj
D A . 

Step 3: Compute the k eigenvectors of L, 1 2, ,  , kv v v , which are associated with the k 
largest eigenvalues, and form the matrix 1 2[    ]=  kX v v v . 

Step 4: Renormalize each row to form a new matrix ×∈ℜn kY with 2 1/ 2( )= ∑ij ij ijjY X X , so 

that each row of Y has a unit magnitude. 
Step 5: Treat each row of Y as a point in kℜ and partition the n points (n rows) into k clusters 

via a general clustering algorithm, such as the K-means algorithm. 
Step 6: Assign the original point ix  to the cluster c  if and only if the corresponding row i 

of the matrix Y is assigned to the cluster c . 
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2.2 Markov Random Walk 
Markov chain is a discrete random process with memorylessness, in which the next state 
depends only on the current state and not on the sequence of events that preceded it. It has 
many applications, such as statistical models of real-world processes. Markov random walk 
can be seen as a Markov chain. More details about Markov random walk can be found in [23]. 

Given a sequence of random variables { ( ), 0,1, 2, }= = X X n n  and its state space 
{1, , }= E N , for 1 2 1 2, , (0 )≤ < < m mn n n n n n ， 1 2, , , ,mi i i j E∈ and t , if the 

probabilities follow: 
 

1 1 2 2{ ( ) | ( ) , ( ) , , ( )
                     = ( ( ) | ( ) }

m m m

m m m

P X n k j X n i X n i X n i
P X n k j X n i

+ = = = =
+ = =


                                (2) 

 
then, the sequence X  is called a Markov chain. The above equation formulates the Markov 
property: memorylessness. In (2), { ( ) | ( ) }, 1+ = = ≥P X n t j X n i t  is called the transition 
probabilities of the Markov chain going from the state i  at time n   to the state j  at time 
+n t , which is usually denoted by ( , )+ijp n n t . A Markov chain is said to be 

time-homogeneous if the value of ( , )+ijp n n t  is independent of the start time n . So, in a 
time-homogeneous Markov chain, the transition probability between two states depends only 
on the time interval, t , which is also called the transition step. Markov chain is assumed to be 
time-homogeneous in this paper. The probability of Markov chain from state i  to state j  
after t  steps, ( )ijp t , is denoted by ( )t

ijp . If the number of steps is one, then (1)
ijp  is abbreviated 

to ijp . The transition matrix of a Markov chain can be constructed as follows: 
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                                                      (3) 

 
When the number of steps is larger than one, the transition matrix after t  steps is called a 

high-order transition matrix, which is represented as follows: 
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( ) ( )
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                                                      (4) 

The transition matrix after t  steps can be computed using the t -th power of the one-step 
transition matrix as follows [23]: 
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))



n Ps
t tP P P P P                                                                       (6) 

 

From the equation (6), the t -step transition matrix ( )tP  can be easily computed once the 
one-step transition matrix is obtained. The elements of ( )tP , denoted as ( )t

ijP , represent the 
transition probability of the MRW going from state i  to j  after t  steps. The probability 
represents different meanings in different applications. In this paper, it is interpreted as the 
extent of connection among the data, as discussed in Section 3.   

3. MRW-K-NN GRAPH 
The transition probabilities of the MRW reflect the complex relations among vertices. If there 
are more paths with high weight between two vertices, the transition probability between them 
will be larger. Thus, the relationships among states carried by high-order transition 
probabilities are more reliable than those in one-step transition matrix. This observation 
motivates us to employ it to determine the neighbors of the sparse graph in spectral clustering. 
It is assumed that iv  is closer to jv  if the t-step probability of the MRW from iv  to jv  is 
higher. The proposed method comprises two main steps. First, MRW is defined on the 
classical k -NN graph, which usually contains many unreliable neighbors. Then, the new 
sparse graph is constructed based on the t -step transition probabilities of MRW. 

The robustness of the transition probabilities of MRW enables the proposed method to not only 
effectively remove unreliable neighbors, but also, to an extent, avoid the condensing degradation. The 
constructed sparse graph is called the MRW-k-NN graph. Details of the proposed method are given as 
follows. 

3.1 Definition of MRW on the common k-NN graph 

Given a data set { }1 2, ,=  nv v vV  and a similarity measure : × →ℜf V V , the common k -NN 
graph, denoted as the C-k-NNG, is constructed as follows. Each data point corresponds to a 
vertex in the graph. For each data iv , it only connects to the k  nearest points according to the 
similarity measure f. The edge between two connected vertices is weighted by their similarity. 
The affinity matrix corresponding to the C- k -NNG is defined as: 
 

           if  ( )  ( )

0                           otherwise                 

 ∈ ∈= 


ij j k i i k j
ij

s v N v or v N v
W ,                                (7) 

 
where ijs  is the similarity between iv  and jv  (i.e., ( , )i jf v v ). Here, ( )k iN v  is the set of k 
nearest neighbors of iv . 

Next, define a MRW on the C- k -NNG [4], assign the states of the random walk to its vertices, and 
define the transition probabilities between the states as functions of the weighted edges. The one-step 
transition probability matrix P  of the MRW can be obtained directly from the affinity matrix W  as 
follows: 
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=
∑

ij
ij
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W
P

W
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where, ijP  represents the one-step transition probability of the MRW going from iv  to jv , and 
 

1
1

=
=∑

n

ij
j

P .                                                        (9) 

 
Given the one-step transition matrix, the t -step probability matrix ( )tP  can be easily obtained by 

computing the power of P  using equation (6). The element of ( )tP , denoted as ( )t
ijP , represents the 

probability of the MRW going from iv  to jv  in t  steps. 

The one-step transition matrix of the MRW only corresponds to the first order neighborhood 
structure of the graph. On the other hand, the t -step transition probability of the MRW corresponds to 
the high-order neighborhood structure of the graph. Hence, ( )t

ijP  can effectively reflect the connection 

between two vertices, iv  and jv . ( )t
ijP  is larger if there exist more paths with larger weighted edges 

between iv  and jv , and vice versa. 

3.2 Construction of the MRW-k-NN graph 
The t-step transition probabilities are employed in this paper because they can reflect more 
reliable relationships among data. Vertex iv  is only connected to the k  neighbors with the 
largest t -step transition probabilities going from iv . The edges are weighted by ijW . The 
corresponding affinity matrix is denoted as ( )tW  and defined as follows: 
 

          
( ) ( )

( )                if  ( )

0                   otherwise      
⋅ ≥= 



t t
ij ij k it

ij
IW P P

W ,                                               (10) 

where ( )
⋅
t

iP  denotes the set containing ( )t
ijP  for 1,2, ,= j n  and ( )( )⋅

t
k iI P  denotes the k -th 

largest element in ( )
⋅
t

iP . It is worth noting that the edges in the MRW- k -NN graph are still 
weighted by W , and ( )tP is only used to determine the connected vertices. This is because the 
value of ( )t

ijP  varies with respect to the value of t  and the degree of vertex iv . Fig. 1 illustrates 
the advantages of using the MRW- k -NN in the construction of the graph. In the figure, the 
solid circle denotes the point s  and the red circles denote its neighbors. The 30 nearest 
neighbors of point s  determined by the transition probability with different values of t  are 
shown in Figs. 1(b)–(f). In Fig. 1(b), the neighbors of the point s  are determined by P , which 
is the same as the result obtained by the common k -NN method. It can be seen that its 
neighbors contain some points from other manifolds. This shows that some of the neighbors 
determined by the common k -NN method are unreliable. However, the neighbors become 
increasingly more reliable as the value of t  increases. It is worth noting that the neighbors of 
the point s  are unreliable when t  becomes very large, as illustrated in Fig. 1(f). This is 
because when t  becomes very large, the probabilities converge to a unique stationary 
distribution. Hence, they have little distinguishable information. As a result, the value of t  
plays an important role in the MRW based methods. In [17], it is suggested that the value of t  
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(a)                                         (b)                                             (c) 

(d)                                             (e)                                              (f) 

Fig. 1. The 30 nearest neighbors of the point s determined by the transition probability 
at different values of t. (a) Original data. (b) t=1. (c) t=2. (d) t=4. (e) t=6. (f) t=100. 

should be chosen according to the task. In this paper, a heuristic method is proposed for 

spectral clustering, and the value of t  is searched from 1 to 20. The value of t  minimizing the 
normalized cut [5] of the resultant clusters is chosen. 

3.3 Spectral clustering with the MRW-k-NN graph 
The MRW- k -NN graph can be constructed by following the above steps. It is easy to apply 
the proposed graph to spectral clustering by substituting the affinity matrix in Algorithm 1 
with the best ( )tW  that minimizes the normalized cut. Spectral clustering with the 
MRW- k -NN graph is described in Algorithm 2. 
 
Algorithm 2: Spectral clustering with the MRW- k -NN graph 
                                                                                                                
Input: Dataset { }1, ,=  nS x x  inℜl , the number of clusters, k , and the maximum order , 
N . 
Output: k -way partition of the input data. 
Step 1: Construct the common k -NN graph as in (7), and define the MRW on it as in (8). 
Step 2: Compute the transition matrices ( )tP ( {1,2, , })∈ t N , and obtain N  corresponding 
affinity matrices ( )tW  ( {1,2, , })∈ t N  as in (10). 
Step 3: For each ( )tW , run the NJW algorithm with ( )tW  by substituting the affinity matrix A 
in the step 1 of Algorithm 1, and obtain N clustering results tC  ( {1,2, , }∈ t N ). 
Step 4: Evaluate the normalized cut of tC ( {1,2, , }∈ t N ) and select the clustering result, 

*C , corresponding to the minimum cut as the return. 
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3.4 Complexity analysis of spectral clustering with the MRW-k-NN graph  
The difference between the new spectral clustering and the NJW algorithm (Algorithm 1) lies 
in their sparse graphs. In the proposed method, there exists a process to select the suitable 
order for the MRW. As described in Algorithm 2, we search for the best order by choosing the 
minimum cut among the N partitions. Suppose that we divide n  data points into k clusters, 
the computing complexity of the NJW algorithm is 3( )O n  and the computing complexity of 
Algorithm 2 is 3( )O Nn . In Section 4, we will show the time-consuming evaluation for the 
proposed method. In addition, the space complexity of Algorithm 2 is 2( )O n , which is the 
same as that of the NJW algorithm. 

4. Experimental Results and Analysis  
To illustrate the effectiveness of our proposed method, we conduct the experiments on several 
synthetic and real datasets. We compared three existing methods for constructing the k -NN 
graphs: the classical method [4], the method based on dominant set [10] and k -regular nearest 
neighbor graph [11]. They are denoted as the C- k -NN, DN- k -NN and R- k -NN, respectively. 
Here, the similarity measure function is defined as: 
 

           
2

2

|| ||
( , ) exp( )

δ

− −
= i j

i j

v v
f v v ,                                                      (11) 

 
where ||•|| denotes the Euclidean distance and δ  is a scale parameter that controls the rate of 
change of the similarity with the distance among the data points. There are two parameters to 
be set: the value of k  in (7) and in (10), as well as the value of δ  in (11), which will be 
discussed in the following subsections. 

 4.1 Synthetic dataset 
The synthetic dataset contains the two-half-moon data and the circle-Gaussian data, as shown 
in Figs. 1(a) and 3(a), respectively. The two-half-moon data consist of two clusters that are 
distributed with nonlinear elongated structures. There are some noises between the two 
clusters. The circle-Gaussian data comprise three clusters: two clusters in the middle with 
Gaussian distribution, and one outer cluster with a circular shape. It is worth noting that the 
circle-Gaussian data are not well separated. The points around the Gaussian clusters tend to 
connect all these three clusters. 
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Fig. 2. The sparse graphs on the two-half-moon data constructed by different methods. 
(a) The C-k-NN method [4]. (b) The R-k-NN method [11]. (c) The DN-k-NN method 

[10]. (d) Our proposed method. 
 

 (a)                                                   (b) 

   (c)                                                     (d) 

In order to have a fair comparison, the value of k  is chosen as 30 in all methods. The value 
of δ  is chosen as the mean distance between the vertices to their tenth neighbor defined, 
according to the Euclidean distance. The sparse graphs of these two synthetic data constructed 
by four different methods are shown in Fig. 2 and Fig. 3, respectively. From Fig. 2 and Fig. 3, 
it is clear that the graphs of these two datasets have common characteristics. There are some 
erroneous neighbors on the C- k -NN graph. The k nearest neighbors of some points are in 
other clusters. This violates the principle requiring that the similarities among the points in the 
same manifold should be larger than those in different manifolds. Compared with the C- k -NN 
graph, there are fewer unreliable neighbors in R- k -NN graphs. However, the performances of 
the R- k -NN graphs are worse than those of the DN- k -NN and MRW- k -NN graphs. The 
DN- k -NN graph determines the nearest neighbors well. However, the vertices in the same 
manifold are separated into several parts. This causes the DN- k -NN graphs to be unsuitable 
for applications such as spectral clustering. This deficiency can be illustrated as follows. For 
the MRW- k -NN graph, the edges connecting various vertices distributed in different 
manifolds have been significantly reduced. Also, the vertices in the same manifold are not 
disconnected. Hence, the graphs constructed by our proposed method outperform those 
constructed by the other methods. 

4.2 MNIST dataset 
We also conducted experiments on the MNIST dataset (http://yann.lecun.com/exdb/mnist/). 
This dataset consists of 10 digits with a total of 70,000 examples. Every example is a 28×28 
gray level image. These 784 pixels are used as a feature vector in the simulations, and principal 
component analysis is applied for pre-processing before computing the Euclidean distances. In 
the experiments, each subset is constructed by selecting the first 200 examples from each digit. 
To illustrate the significance of these sparse graphs, the full graph (FULL) is also included for 
the comparisons. 

The value of δ  is chosen as the local scale parameter defined in [24] and k  is chosen as 10. 
The normalized mutual information (NMI) is employed as a performance index of the 
clustering, which is widely employed to evaluate clustering results [9, 25].  Suppose X and Y 

http://yann.lecun.com/exdb/mnist/
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denote two random variables, then the NMI is defined as: 

 

NMI ( , )( , )
( ) ( )

I
H H

=
X YX Y
X Y

                                                   
        (12) 

 
where (X,Y)I  is the mutual information between X and Y, and (X)H  is the entropy of X. 
When evaluating the performance of clustering algorithms, the NMI is computed by regarding 
the clustering result and true class label as two random variables. Specifically, given a dataset 
with n points, the true classes and clustered classes are represented by },,,{ 21
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hh CCC  , respectively, where k and k’ denote the number of the classes and the 
number of the true classes, respectively. The NMI is computed as: 

∑ ∑

∑ ∑

= =

= =

=
k
i

k
j

h
jh

j

l
il

i

k
i

k
j h

j
l
i

ij
ij

n
n

n
n
nn

nn

nn
n

1 1

1 1

'

'

)log()(log(

)log(

NMI                                           （13） 

where l
in and h

jn denote the number of  points in l
iC  and h

jC , and ijn  denotes the number of 

points belonging to l
iC  and h

jC . The range of NMI is from 0 to 1 and larger NMI implies better 
clustering results. 

First, we constructed several subsets containing the digital groups {1, 2, 3}, {0, 5, 6}, {1, 4, 
7, 9} and {0, … , 9}. The results obtained for these subsets are shown in Fig. 4. It can be seen 
that the sparse graphs obtained by our proposed method achieved better NMIs for all the 
subsets than those obtained by other methods. Moreover, these sparse graphs of the existing 
methods achieved better results compared to the full graph (FULL), which confirms that 
sparse graphs are important. 

We also conducted simulations on the subsets comprising one pair of digits—a total of 45 
subsets (pairs). Fig. 5 shows these results. In most cases, our proposed method outperformed 

Fig. 3. The sparse graphs on the circle-Gaussian data constructed by different methods. (a) 
Circle-gauss data.  (b) The C-k-NN method [4]. (c) The R-k-NN method [11]. (d) The 

DN-k-NN method [10]. (e) Our proposed method. 

(a) 

(b)                                               (c)                                             (d)                                       (e) 
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other methods. In particular, the spectral clustering with the graphs constructed via the 
C- k -NN method, the DN- k -NN method, the R- k -NN method and our proposed method 
achieved the best results in 1, 11, 6, 6, 21 cases, respectively. The mean and the standard 
deviation of the values of NMIs of different methods on these 45 pairs are shown in Table 1. It 
can be seen from Table 1 that our proposed method obtained the highest mean and the lowest 
standard deviation of the values of NMIs. The larger mean value refers to the better spectral 
clustering performance, while the smaller standard deviation refers to the more robustness of 
the method. Thus, from Table 1 it is clear that our proposed method comprehensively 
outperforms the other three methods. 

 

 

  

Fig. 4. The results on several subsets of the MNIST dataset. 

 FULL C-k-NN DN-k-NN R-k-NN MRW-k-NN 

mean 0.6338 0.7806 0.7438 0.7827 0.8055 

standard 
deviation 0.2504 0.2359 0.2431 0.2379 0.2262 

 

Table 1. Means and standard deviations of the NMIS of the spectral 
clustering for the different graphs performed on the 45 tests. 

Fig. 5. Results for 45 subsets of the MNIST dataset 
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(a)                                     (b)                                         (c)                                      (d) 

Fig. 6. Sparse graphs constructed on the pairwise digit subsets by various methods. Graphs 
(a)-(d) are constructed on the subset {1, 2} by C-k-NN method [4], R-k-NN method [11], 
DN-k-NN method [10] and our proposed method respectively. Graphs (e)-(h) are 
constructed on the subset {1, 9} by C-k-NN method [4], R-k-NN method [11], DN-k-NN 
method [10] and our proposed method respectively. The red circles in (a) and (e) are the 
notable regions. 
 

(e)                                       (f)                                        (g)                                      (h) 

To further illustrate the effectiveness of the proposed method, we also show the sparse 
graphs on the real-world dataset. It is difficult to draw the actual graph because the samples are 
in high-dimension space; therefore, we applied principal component analysis and obtained 
graphs in the two principal dimensions, as shown in Fig. 6. In the figure, the vertices with the 
same color denote the same kind of digits, of which there are two kinds in the graphs. From the 
red circles indicating the notable regions, it can be seen that: 1) there exist many edges 
connected vertices from different digits in C-k-NN graph; 2) the other three methods, namely 
R-k-NN, DN-k-NN and the proposed method, can reduce the wrong edges to an extent, which 
can be seen in the notable regions; 3) compared with the graphs by R-k-NN and DN-k-NN, 
especially in the notable regions, more right edges and less error are found in the graph based 
on our proposed method, In general, the graph based on our proposed method is more suitable 
for spectral clustering.  

Additionally, we also examined the time consumption of these methods. Fig. 7  shows the 
computational time required for the simulations of these five methods. As expected, the time 
taken for the spectral clustering with MRW-k-NN is always approximately N (maximum order) 
times that of the spectral clustering with C-k-NN, the same as those with FULL and DN-k-NN. 
However, our proposed method takes less time than the R-k-NN method. The main reason 
more time was required for our proposed method is that the spectral clustering algorithm has to 
run repeatedly to look for the best order of the MRW. 
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Fig. 7. Comparison of running-time for five algorithms on the MNIST dataset. 

 

5. CONCLUSIONS 
To improve the performance of spectral clustering, the MRW based method for constructing 
reliable k-NN graphs is proposed in this paper. The high-order transition probability of MRW 
is adopted to determine the neighbors in the proposed method. The proposed method consists 
of two steps. In the first step, an MRW model on the common k -NN graph constructed by the 
data is introduced. Then, in the second step, the probability of the MRW is computed and 
utilized to determine the neighbors. Because of the advantage that the high-order transition 
probabilities characterize the complex relationships among data, the neighbors selected in the 
proposed graph are more reliable than those of existing methods. The results of experiments 
show that the graph constructed by our proposed method performs better and can efficiently 
improve the performance of spectral clustering. 

In future work, we plan to explore a more efficient algorithm to determine the order of the MRW 
and further verify the effectiveness of the proposed graph in other applications. 

References 
[1] K. Jain, “Data clustering: 50 years beyond K-means, Pattern Recognition Letters,” vol. 31, pp. 

651-666, 2010.  Article (CrossRef Link) 
[2] F. Elijorde, S. Kim, J. Lee, “A Wind Turbine Fault Detection Approach Based on Cluster Analysis 

and Frequent Pattern Mining,” KSII Transactions on Internet and Information Systems (TIIS), vol. 
8, no. 2, pp. 664-677, 2014. Article (CrossRef Link) 

[3] Wang, L., Dong, M., “Multi-level Low-rank Approximation-based Spectral Clustering for image 
segmentation,” Pattern Recognition Lett, vol. 33, pp. 2206-2215, 2012. Article (CrossRef Link) 

[4] Luxburg, U, “A tutorial on spectral clustering. Statistics and Computing,” vol. 17, pp. 395-416, 
2007. Article (CrossRef Link) 

[5] Shi, J., Malik, J., “Normalized cuts and image segmentation,” IEEE Trans. Pattern Anal. Machine 
Intell. vol. 22, pp. 888-905, 2000. Article (CrossRef Link) 

[6] Ng, A., Jordan, M., Weiss. Y., “On spectral clustering: analysis and an algorithm,” in Proc of. 
Advances in Neural Information Processing Systems (NIPS), vol. 15, MIT Press, 2002. 
http://citeseerx.ist. psu.edu/viewdoc/summary?doi=10.1.1.19.8100 

http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://www.kpubs.org/search/goSearch.kpubs?newQstr=AUTHOR_EN:Frank%20Elijorde&vQstr=AUTHOR_KR:Frank%20Elijorde
http://www.kpubs.org/search/goSearch.kpubs?newQstr=AUTHOR_EN:Sungho%20Kim&vQstr=AUTHOR_KR:Sungho%20Kim
http://www.kpubs.org/search/goSearch.kpubs?newQstr=AUTHOR_EN:Jaewan%20Lee&vQstr=AUTHOR_KR:Jaewan%20Lee
http://dx.doi.org/10.3837/tiis.2014.02.0019
http://dx.doi.org/10.1016/j.patrec.2012.07.024
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1109/34.868688


2582                                      Cao et al.: Spectral Clustering with Sparse Graph Construction Based on Markov Random Walk 

[7] J. Zhou, S. Gao, Z. Jin, “A New Connected Coherence Tree Algorithm For Image Segmentation,” 
KSII Transactions On Internet And Information Systems, vol. 6, no. 4, pp.1118-1202, 2012. 
Article (CrossRef Link) 

[8] Verma, D., Meila, M., “A comparison of spectral clustering algorithms,” Technical Report 
03-05-01, University of Washington Department of Computer Science, 2003. 
http://citeseerx. ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6424 

[9] J. Z. Cao, P. Chen, Q. Y. Dai, Wing-Kuen Ling, “Local information-based fast approximate 
spectral clustering, Pattern Recognition Letters,” vol. 38, pp. 63-69, 2014. 
Article (CrossRef Link) 

[10] X. Yang, L. J. Latecki, “Affinity learning on a tensor product graph with applications to shape and 
image retrieval,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 
2369-2376, 2011. Article (CrossRef Link) 

[11] Wang B, Pan F, Hu K M, Paul J C, “Manifold-ranking based retrieval using k-regular nearest 
neighbor graph,” Pattern Recognition, vol. 45, pp. 1569-1577, 2012. 
doi>10.1016/j.patcog.2011.09.006 

[12] Li Y, “K-edge connected neighborhood graph for geodesic distance estimation and nonlinear data 
projection,” in Proc. of The International Conference on Pattern Recognition, 2004. 
Article (CrossRef Link) 

[13] Li Y, “Building k-edge-connected neighborhood graph for distance-based data projection,” 
Pattern Recognition Letters, vol. 26, no. 13, pp. 2015-2021, 2005. Article (CrossRef Link) 

[14] Li Y, “Building k edge-disjoint spanning trees of minimum total length for isometric data 
embedding,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1680-1683, 2005. 
Article (CrossRef Link) 

[15] Jebara T, Wang J, Chang S F, “Graph construction and b-matching for semi-supervised learning,” 
in Proc. of International Conferenceon Machine Learning, 2009. Article (CrossRef Link) 

[16] Cheng B, Yang J, Yan S, Fu Y. Huang T S. Learning with l1-graph for image analysis. IEEE 
Transactionson Image Processing, 19: 858-866, 2010. Article (CrossRef Link) 

[17] M. Szummer, T. Jaakkola, “Partially labeled classification with Markov random walks,” 
Advances in Neural Information Processing Systems (NIPS), pp.945-952, 2001. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.1955 

[18] S. Lafon, A. B. Lee, “Diffusion maps and coarse-graining: a unified framework for dimensionality 
reduction,” graph partitioning, and data set parameterization, IEEE Trans. Pattern Anal. Mach. 
Intell., vol. 28, no. 9, pp. 1393-1403, 2006. Article (CrossRef Link) 

[19] J. Jiang, B. Wang, Z. Tu, “Unsupervised metric learning by self-smoothing operator,” in Proc. 
IEEE Conf. on Computer Vision (ICCV), pp. 794-801, 2011. Article (CrossRef Link) 

[20] Xianchao ZHANG, Quanzeng YOU, “An improved spectral clustering algorithm based on 
random walk [J],” Frontiers of Computer Science in China, vol. 3, pp. 268-278, 2012. 
Article (CrossRef Link) 

[21] M Meila, J Shi, “A Random Walks View of spectral segmentation,” in Proc. of 8th Inernational 
Workshop on Artificial intelligence and Statistics, 2001. 
http://citeseer.ist.psu.edu/viewdoc/ summary?doi=10.1.1.33.1501 

[22] Chung, F. R. K, “Spectral Graph Theory, Regional Conference Series in Mathematics,” AMS. 92, 
1997.  

[23] P. Bertsekas , N. Tsitsiklis, “Introduction to Probability,” AMS, 1997. http://vfu.bg/en/e-Learning/ 
Math--Bertsekas_Tsitsiklis_Introduction_to_probability.pdf 

[24] L. Zelnik-Manor, P. Perona, “Self-tuning spectral clustering,” Advances in Neural Information 
Processing Systems (NIPS), pp. 1601-1608, 2004. http://www.vision.caltech.edu/lihi/Demos/ 
SelfTuningClustering.html 

[25] Shang, F., Jiao, L. C., Shi, J., Gong, M.,  Shang, R. H, “Fast density-weighted low-rank 
approximation spectral clustering,” Data Min Knowl Disc, vol. 23, pp.345-378, 2011. 
http://link.springer.com/article/10.1007/s10618-010-0207-5 

[26] Lovasz L, “Random Walks on Graphs: A Survey,” Combinatorics, vol. 80, no. 2, pp. 1-46, 1993. 
www.cs.elte.hu/~lovasz/erdos.pdf 

http://dx.doi.org/10.3837/tiis.2012.04.014
http://dx.doi.org/10.1016/j.patrec.2013.11.005
http://dx.doi.org/10.1109/CVPR.2011.5995325
http://dx.doi.org/10.1016/j.patcog.2011.09.006
http://dx.doi.org/10.1109/ICPR.2004.1334057
http://dx.doi.org/10.1016/j.patrec.2005.03.021
http://dx.doi.org/10.1109/TPAMI.2005.192
http://dx.doi.org/10.1145/1553374.1553432
http://dx.doi.org/10.1109/TIP.2009.2038764
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.1955
http://dx.doi.org/10.1109/TPAMI.2006.184
http://dx.doi.org/10.1109/ICCV.2011.6126318
http://c.g.wanfangdata.com.cn/Periodical-zggdxxxswz-jsjkx.aspx
http://dx.doi.org/10.1007/s11704-011-0023-0
http://citeseer.ist.psu.edu/viewdoc/%20summary?doi=10.1.1.33.1501
http://www.mit.edu/people/dimitrib/home.html
http://web.mit.edu/jnt/www/home.html
http://vfu.bg/en/e-Learning/%20Math--Bertsekas_Tsitsiklis_Introduction_to_probability.pdf
http://vfu.bg/en/e-Learning/%20Math--Bertsekas_Tsitsiklis_Introduction_to_probability.pdf
http://www.vision.caltech.edu/lihi/Demos/%20SelfTuningClustering.html
http://www.vision.caltech.edu/lihi/Demos/%20SelfTuningClustering.html
http://link.springer.com/search?facet-author=%22Fanhua+Shang%22
http://link.springer.com/search?facet-author=%22L.+C.+Jiao%22
http://link.springer.com/search?facet-author=%22Jiarong+Shi%22
http://link.springer.com/search?facet-author=%22Maoguo+Gong%22
http://link.springer.com/search?facet-author=%22R.+H.+Shang%22
http://link.springer.com/journal/10618
http://link.springer.com/article/10.1007/s10618-010-0207-5


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 7, July 2015                                      2583 

[27] S. White, P. Smyth, “Algorithms for Estimating Relative Importance in Networks,” in Proc. of 
Ninth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 266-275, 2003. 
Article (CrossRef Link) 

[28] R.I. Kondor, J. Lafferty, “Diffusion Kernels on Graphs and Other Discrete Structures,” in Proc. of 
19th Int’l Conf. Machine Learning, pp. 315-322, 2002. Article (CrossRef Link) 

[29] M. Newman, “A Measure of Betweenness Centrality Based on Random Walks,” Social Networks, 
vol. 27, no. 1, pp. 39-54, 2005.  Article (CrossRef Link) 

[30] C. Faloutsos, K. McCurley, A. Tomkins, “Fast Discovery of Connection Subgraphs,”  in Proc. of 
10th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 118-127, 2004. 
Article (CrossRef Link) 

[31] C. Palmer, C. Faloutsos, “Electricity Based External Similarity of Categorical Attributes,” in Proc. 
of Seventh Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD ’03), pp. 486-500, 
2003. Article (CrossRef Link) 

[32] F. Fouss, A. Pirotte, J. Renders, M. Saerens, “Random-walk computation of similarities between 
nodes of a graph, with application to collaborative recommendation,” IEEE Transactions on 
Knowledge and Data Engineering, vol. 19, no. 3, 2007. Article (CrossRef Link) 

[33] R. Lambiotte, J. Delvenne, M. Barahona, “Random Walks, Markov Processes and the Multiscale 
Modular Organization of Complex Networks,” IEEE Transactions on Network Science and 
Engineering, vol. 1, no. 2, pp. 76-90, 2014. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jiangzhong Cao received his Ph.D. degree in communication and information system 
from School of Information Science and Technology, Sun Yat-sen University, China, in 2013. 
He is currently a Lecturer in the School of Information Engineering, Guangdong University 
of Technology, Guangzhou, China. His research interests include computer vision and 
pattern recognition. 
 
 
 

 
Pei Chen received two Ph.D. degrees in wavelets and computer vision from Shanghai 
Jiaotong University, Shanghai, China, and Monash University, Melbourne, Australia, in 2001 
and 2004, respectively. He is currently a Professor in the School of Information Science and 
Technology, Sun Yat-sen University, Guangzhou, China. He has been a Post-Doctoral 
Researcher with Monash University, a Senior Research Engineer with Motorola Labs, 
Shanghai, and a Research Professor with SIAT/CAS, Shenzhen, China. His current research 
interests include topics in computer vision and machine learning. 
 
 

http://dx.doi.org/10.1145/956750.956782
http://citeseerx.ist.psu.edu/viewdoc/summary?%20doi=10.1.1.128.4966
http://dx.doi.org/doi:10.1016/j.socnet.2004.11.009
http://dx.doi.org/10.1145/1014052.1014068
http://dx.doi.org/10.1109/TKDE.2007.46
http://dx.doi.org/10.1109/TNSE.2015.2391998


2584                                      Cao et al.: Spectral Clustering with Sparse Graph Construction Based on Markov Random Walk 

Wing-KuenLing received the B.Eng.(Hons) and M.Phil. degrees from the Department of 
Electronic and Computer Engineering, Hong Kong University of Science and Technology, 
in1997 and 2000, respectively, and the Ph.D. degree in the Department of Electronic and 
Information Engineering of the Hong degree in the Department of Electronic and Information 
Engineering of the HongKong Polytechnic University in 2003. In 2004, he joined the King’s 
College London as a Lecturer. In 2010, he joined the University of Lincon as a Principal 
Lecturer and promoted to a Reader in 2011. In 2012, he joined Guangdong University of 
Technology as a Full Professor. He is a Fellow of IET, a senior member of IEEE, and a China 
National Young Thousand-People-Plan Distinguished Professor. He currently serves in the 
technical committees of the Non-linear Circuits and Systems Group, the digital signal 
processing group and the power electronics and systems group of the IEEE Circuits and 
Systems Community. He was awarded the best reviewer prizes from the IEEE 
Instrumentation and Measurement Society in 2008 and 2012. He has also served as the guest 
editor-in-chief of several special issues of highly rated international journals, such as the 
Circuits, Systems and Signal Processing, the American Journal of Engineering and Applied 
Sciences, the International Journal of Digital Content Technology and Its Applications, and 
the Mediterranean Journal of Electronics and Communications. He is currently an associate 
editor of several international journals, including International Journal of Bifurcation and 
Chaos, the Circuits, Systems and Signal Processing, Journal of the Franklin Institute, 
American Journal of Engineering and Applied Sciences, International Journal of Engineering 
and Emerging Technologies, International Journal of Applied Mathematics and Modeling, 
and Open Journal Advanced Engineering Techniques. He has published an undergraduate 
textbook, are search monograph, four book chapters, a book review published in an IEEE 
journal, more than 75 papers in international leading journals and more than 55 papers in 
highly rated international conference. He has held 7 visiting positions and delivered more 
than 20 seminars in the fields of image processing, time frequency analysis, optimization 
theory, symbolic dynamics, as well as fuzzy and impulsive control theory. 

 
Zhijing Yang received the B.S. and Ph.D. degrees from the Faculty of Mathematics and 
Computing Science, Sun Yat-Sen University, Guangzhou, China, in 2003 and 2008, 
respectively. Then, he became a Lecturer in the same university. He was a Visiting Research 
Scholar in the School of Computing, Informatics and Media, University of Bradford, U.K., 
between June 2009 and December 2009, and a Research Fellow in the School of Engineering, 
University of Lincoln, between January 2011 and January 2013. He is currently an Associate 
Professor in the Faculty of Information Engineering, Guangdong University of Technology, 
China. He has been a project leader for three projects on signal processing from National 
Natural Science Foundation of China. His current research interests include time-frequency 
analysis, signal processing, machine learning, and pattern recognition. 
 

 
Qingyun Dai received the Ph.D. degree in communication and information systems from 
South China University of Technology, Guangzhou, China. She is currently a Professor in the 
School of Information Engineering, Guangdong University of Technology, Guangzhou, 
China. She has also been a Post-Doctoral Researcher at Sun Yat-sen University, Guangzhou, 
China. Her current research interests include Image Processing, RFID and Internet of Things. 


