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Abstract 
 

Images acquired by Large Aperture Static Imaging Spectrometer (LASIS) exhibit obvious 
interference stripes, which are vertical and stationary due to the special imaging principle of 
interference hyperspectral image (IHI) data. As the special characteristics above will seriously 
affect the intrinsic structure and sparsity of IHI, decomposition of IHI has drawn considerable 
attentions of many scientists and lots of efforts have been made. Although some 
decomposition methods for interference hyperspectral data have been proposed to solve the 
above problem of interference stripes, too many times of iteration are necessary to get an 
optimal solution, which will severely affect the efficiency of application. A novel algorithm 
for decomposition of interference hyperspectral images based on split Bregman iteration is 
proposed in this paper, compared with other decomposition methods, numerical experiments 
have proved that the proposed method will be much more efficient and can reduce the times of 
iteration significantly. 
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1. Introduction 

Interference hyperspectral imaging is a powerful technology in the field of remote sensing, 
which can get the spectral and spatial information of the observed targets. The above 
technology  has been widely used in many fields, such as geology, military, meteorology and 
so on. In the "Chang'E" lunar exploration satellite and environmental monitoring satellite, the 
interference hyperspectral spectrometer has both been successfully equipped, and has also 
become the research focus in the recent years.  As the reason that the special imaging principle 
of interference hyperspectral technology is light interference, lots of interference stripes exist 
in each frame of interference hyperspectral image (IHI), which will destroy the image’s 
intrinsic structure and sparsity severely. As the above reason, it is difficult to find an existing 
orthonormal basis to sparsely represent the IHI data. In addition, due to the huge amount and 
high resolution of the IHI, over-complete dictionary learning for IHI will waste too much time 
and make the whole process inefficient.  

In order to make the IHI data be easily sparsely represented, the idea of separating the 
interference stripe layers (layers containing only interference stripes) from the background 
layers (layers containing only natural information without any interference stripe) is taken into 
account, and many state-of-the-art algorithms of image layers decomposition for IHI data have 
been proposed in recent years. 

Morphological component analysis (MCA) theory is adopted for the image layer 
decomposition of IHI data, which is proposed in 2015 [1]; IMCA(Improved MCA) algorithm 
is proposed in [2], which is improved according to the IHI data’s special characteristics; In [3], 
idea of MCA and Total Variation (TV) is combined and an IMT (Improved MCA-TV) 
algorithm is proposed for decomposition of the IHI data. The decomposition models proposed 
in [1-3] could realize the image layer decomposition for IHI data successfully, but all of the 
proposed models have a common defect: low efficiency. All of the above algorithms need too 
many times of iteration and spend too much time, which will affect the efficiency of 
decomposition seriously. However, a decomposed model of interference hyperspectral images 
based on split Bregman iteration is proposed in this paper, which can realize the IHI image 
decomposition with high efficiency due to its simple linear operations. 

The paper will be organized as follows: Characteristic of the IHI data will be introduced in 
section 2. Section 3 will introduce the theory of split Bregman iteration. The decomposition 
model based on split Bregman iteration for IHI data will be proposed in section 4. Experiments 
and analysis will be given in section 5 and the conclusion and prospect will be given in section 
6. 

2. Characteristic of Interference Hyperspectral Images 
The imaging principle and equivalent optical path of the interference imaging spectrometer 
have been described in [1-3]. Fig. 1 shows the equivalent optical path in lateral shearing 
interferometer. S1 and S2 are the two separated rays by the light from a ground point. In the 
interferometer, The OPD (Optical Path Difference) of point O in CCD detector is zero. FTL 
(Fourier transform lens) is the main imaging equipment, FTLf  is the focus of Fourier lens. 
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…

 
Fig. 1. The sketch map of the interference hyperspectral spectrometer 

 
The OPD of point P on the CCD is: 

      sin
FTL

dx d y
f

θ= =                                                             (1) 

The explanation of Formula (1) :As Fig. 1 shows, the distance between P and O on the CCD 

detector is y, so the value of sinθ  can approximately be calculated as  / FTLy f . A red line (which 

is vertical to the line S2P) is added in Fig. 1, the angle between line S1 S2  and the red line added 

are also θ , so the OPD of point P (length of the blue line added in Fig. 1) can be calculated as 

Formula (1) shows. 

According to the theory of Fourier transform, the interference curve can be expressed as: 

max max

min min

2
2( ) ( ) ( ) FTL

ydj kk k fj kx

k k
I x B k e dk B k e dk

π
π= =∫ ∫                                       (2) 

In which ( )B k  is the spectral distribution of source, maxk  and mink  are the extremums of 

wavenumber, x represents OPD of this interference curve. As the Fourier transform of ( )B k  

is a real and even function. So formula (2) equals to  

max max

min min

( ) ( ) cos(2 ) ( ) cos(2 )
k k

k k
FTL

dI x B k kx dk B k ky dk
f

π π= =∫ ∫                    (3) 

Which is the mathematical model of the vertical interference stripes in the IHI data, and 

I(x) will have different values at different OPD (which x represents), that is the reason why the 

maximum amplitude of vertical interference stripes always exist at the same places. 

The spectrum curve can be obtained by inverse Fourier transform of the interference 

curve according to the basic Fourier transform relationship. The inverse Fourier transform of 
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formula (2) is: 

m m
2

2

0 0
( ) ( ) ( ) FTL

ydj k
fj kxB k I x e dx I x e dx

πd dπ
−

−= =∫ ∫                                   (4) 

mδ  is the maximum OPD. The corresponding cosine transform is: 

m m

0 0
( ) ( ) cos(2 ) ( ) cos(2 )

FTL

dB k I x kx dx I x ky dx
f

d d
π π= =∫ ∫

                
 (5) 

The main characteristics of IHI data are as follows:  

First, there are vertical interference stripes in each frame of IHI. Second, the background 

of IHI has horizontal shift between frames. 

Vertical interference stripes obviously exist in each frame of IHI data. LASIS (Large 

Aperture Static Imaging Spectrometer) IHI data sequences are shown in Fig. 2, in which 

vertical interference stripes can been obviously found in the left part of the LASIS IHI data. To 

obtain the spectrum information from the IHI data, post-processing of corresponding column 

extraction from LASIS IHI data should be done [4] as Fig. 3 shows, and LSMIS (Large 

Spatially Modulated Interference Spectral Image) IHI data will be gotten after the 

post-processing as Fig. 4 shows. 

As Fig. 4 shows vertical interference stripes still exist in the LSMIS IHI data, while the 

background image of LSMIS is composed of the corresponding columns of each LASIS IHI 

data frame, so the horizontal pixels of background image almost have the same value in 

LSMIS IHI data. As the above reason, we can utilize the unidirectional characteristics to 

decompose the LSMIS data into two different image layers [3]: 1) background layer; 2) 

interference stripe layer. From the point of view in mathematics, the background layer will 

have lower values of total variation (which is the summation of the gradient absolutions) in 

horizontal direction, while the interference stripe layer will have lower values of total variation 

in vertical direction. The optimal result of the decomposition can be calculated using the 

regularized thought as follows: 

221 2
_ 2 2

arg min
2 2B

B opt x B y I
X

X X Xλ λ
= ∇ ⊗ + ∇ ⊗  

=
221 2

2 2
arg min ( )

2 2B
x B y B

X
X X Xλ λ

∇ ⊗ + ∇ ⊗ −  

<=>
221 2

2 2
arg min ( )

2 2B
x B y B

X
X X Xλ λ

∇ ⊗ + ∇ ⊗ −  
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where X is the original LSMIS IHI data, XB is the background layer, XI=X-XB is the interference 

stripe layer, λ1，λ2 are the regularized weights of the two layers respectively, ⊗ is the 

convolution operator, ▽x ,▽y are horizontal and vertical gradient operators respectively, and 

the convolution with ▽x  and ▽y denotes the total variation in horizontal and vertical direction 

respectively [5]. XB_opt is the optimal result of XB, which is the background layer of LSMIS IHI 

data, so XB_opt should not have too much difference with the original image X. As the above 

reason, fidelity term is added as the following formula (6) shows: 

_B optX =
22 21 2

2 2 2

1arg min + ( )
2 2 2B

B x B y B
X

X X X X Xλ λ
− ∇ ⊗ + ∇ ⊗ −   (6) 

 
Fig. 2. LASIS interference hyperspectral image sequences 

3. Introduction of Split Bregman Iteration 
Split Bregman iteration [6] is an efficient algorithm to get the optimal solution of the 

following inverse problem: 
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min ( ) ( )
u

E u H uλ+                                                                 (7) 

where E(u) and H(u) are the convex functions of fidelity term and regular term respectively. 

Formula (8) is adopted to solve the formula (7) as the following shows: 
1 min ( , ) ( )k P k

Eu
u D u u H uλ+ = +                                                     (8) 

where ( , )P k
ED u u  is defined as the Bregman distance between u and uk: 

( , )= ( ) ( ) ,P k k k
ED u u E u E u p u u− − −                      (9) 

where p is sub-gradient of E at uk. And u, uk, and uk+1 are the optimal u, u in the k th iteration, 

and (k+1) th iteration respectively. 

 

 
Fig. 3. Post-processing of LASIS 
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Fig. 4. One frame of LSMIS interference hyperspectral image 

 

Two variables d and b (which can split the Bregman formulation and improve the 

efficiency of regularization by alternative minimization) are added into the split Bregman 

iteration, and alternative minimization of the two variables in formula (10) will be calculated 

to solve the problem in formula (7): 

21 1

2,
( , ) min ( ) ( )

2
k k k

u d
u d d E u d H u bλ+ + = + + − −                          (10) 

1 1 1( ( ) )k k k kb b H u d+ + += + −                                                  (11) 

where d and b are two key variables in the split Bregman iteration, which can transform the 

original nonlinear problem into two linear problems of d and b respectively. The above 

transformation will improve the efficiency of original regularization of nonlinear problem. 

Basic steps of split Bregman iteration can be derived combining formula (9) with (10) and (11). 

The split Bregman iteration is widely used in the fields of image deblurring, basis pursuit, and 

image denoising [6-10]. The decomposition model for IHI data based on split Bregman 

iteration is first proposed in this paper, in order to get the optimal decomposed result with high 

efficiency. 

4. Image Decomposition Based on Split Bregman Iteration 

 In this section, we will adopt split Bregman iteration to solve the problem of formula 

(6) and propose an efficient decomposition method for IHI data. As formula (6) has two 
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regular terms, so four variables dx, dy, bx, by , are introduced and formula (6) can be modified as 

the following formula (12) shows: 

21 1 1
2, ,

1( , , ) arg min +
2B x y

k k k
B x y B x yX d d

X d d X X d d+ + + = − +             

2 21 2
2 2

( )
2 2

k k
x x B x y y B yd X b d X X bλ λ

+ −∇ ⊗ − + −∇ ⊗ − −          (12) 

Formula (12) will be solved through alternative minimization with respect to the three 

variables BX , dx, dy, respectively. The exact steps are given as follows: 

Step 1: 

2 2 21 1 2
2 2 2

1min ( )
2 2 2B

k k k k k k k k
B B x x B x y y B yX

X X X d X b d X X bλ λ+ = − + −∇ ⊗ − + −∇ ⊗ − −  

 (13) 

Step 2: 
1

1 1
1

1

1max( 0).*
k k

k k k x B x
x x B x k k

x B x

X bd X b
X bλ

+
+ +

+

∇ ⊗ +
= ∇ ⊗ + −

∇ ⊗ +
，                    (14) 

1
1 1

1
2

( )1max( ( ) 0).*
( )

k k
y B yk k k

y y B y k k
y B y

X X b
d X X b

X X bλ

+
+ +

+

∇ ⊗ − +
= ∇ ⊗ − + −

∇ ⊗ − +
，         (15) 

1 1 1( )k k k k
x x x B xb b X d+ + += + ∇ ⊗ −                                           (16) 

1 1 1( ( ) )k k k k
y y y B yb b X X d+ + += + ∇ ⊗ − −                                 (17) 

where k is the iteration times of split Bregman, “.*” in formula (14) and (15) refers to 

component-wise multiplication. 

To get the optimal XB which will make the formula (13) has the minimization, the 

difference of formula (13) with respect to XB will be calculated and the following formula will 

be gotten: 

1 2(1 )T T
x x y y BXλ λ+ ∇ ⊗∇ + ∇ ⊗∇ ⊗                                                    

1 2( ) ( )T T
x x x y y y yX d b d X bλ λ= + ∇ ⊗ − + ∇ ⊗ +∇ ⊗ −                   (18) 

Let T1= 1 2( ) ( )T T
x x x y y y yX d b d X bλ λ+ ∇ ⊗ − + ∇ ⊗ +∇ ⊗ − , 

T2= 1 21 T T
x x y yλ λ+ ∇ ⊗∇ + ∇ ⊗∇ , 
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     1
1 2( ( ). / ( ))BX F F T F T−=                                                          (19) 

where F and F-1 are FFT (Fast Fourier Transformation) and inverse FFT respectively. ./ refers 

to component-wise division. Through calculating formula (19), we will get the optimal 

solution of formula (13) much more efficient. 

The above operations in formulas (13) to (17) are only doing the Bregman iteration 

update for regularized terms. Considering the fidelity term 2

2

1
2 BX X−  in formula (6), the 

original LSIMS IHI data X will also need Bregman iteration update. Since the ideal 

background layer should not have too much difference with the original LSMIS image, so the 

update for fidelity term can be operated as follows: 
1 +12k k k

BX X X+ = −                                            (20) 

Pseudo-code of proposed decomposition model is given as follows:  

Input: LSMIS IHI image X , regularized weights λ1, λ2, two maximum iteration times of 

Bregman update (outer and inner) N1, N2 , loop variable k 

k=0， k
BX =X， 

k
xd ， k

yd ， k
xb ， k

yb  are the null matrices with the same size as X 

for 1：N1 

for 1：N2 

2 2 21 1 2
2 2 2

1min ( )
2 2 2B

k k k k k k k k k k
B B x x B x y y B yX

X X X d X b d X X bλ λ+ = − + −∇ ⊗ − + −∇ ⊗ − −

        
1

1 1
1

1

1max( 0).*
k k

k k k x B x
x x B x k k

x B x

X bd X b
X bλ

+
+ +

+

∇ ⊗ +
= ∇ ⊗ + −

∇ ⊗ +
，                   

1
1 1

1
2

( )1max( ( ) 0).*
( )

k k
y B yk k k

y y B y k k
y B y

X X b
d X X b

X X bλ

+
+ +

+

∇ ⊗ − +
= ∇ ⊗ − + −

∇ ⊗ − +
，         

1 1 1( )k k k k
x x x B xb b X d+ + += + ∇ ⊗ −                                     

1 1 1( ( ) )k k k k
y y y B yb b X X d+ + += + ∇ ⊗ − −                                

end 
1 +12k k k

BX X X+ = −  

k=k+1 
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end 

Output: background layer XB , interference stripe layer I BX X X= −  

5. Experiments and Analysis 
As Fig. 5 shows, 3 frames of LSMIS IHI data (12 bytes of size 256×256, the data came 

from Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, which are 

gotten after the post-processing [4] of the ground truth data LASIS IHI as Fig. 2-3 show) and 

one frame of LASIS IHI data (12 bytes of size 128×128) will be chosen for experimental 

comparison. The algorithms of IMCA and IMT will be adopted for comparison with the 

proposed method (λ1, λ2, N1 and N2 are chosen to be 30, 500, 4 and 2 respectively). Compared 

results are shown as follows:  

 

   
(a) LSMIS1                                  (b) LSMIS2 

  
(c) LSMIS3                                   (d) LASIS 

Fig. 5. Original LSMIS and LASIS IHI Image 
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(a)                                                                                       (b) 

       
(c)                                                                                       (d) 

 

         
(e)                                                                                       (f) 

 
Fig. 6. Comparison Results of LSMIS1 Decomposition: (a) XB decomposed by IMCA (b) XI 

decomposed by IMCA(c) XB decomposed by IMT<iteration 600> (d) XI decomposed by IMT<iteration 
600> (e) XB decomposed by proposed method             (f) XI decomposed by proposed method 
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(a)                                                                                       (b) 

 

       
(c)                                                                                       (d) 

 

        
(e)                                                                                       (f) 

 
Fig. 7. Comparison Results of LSMIS2 Decomposition:  

(a) XB decomposed by IMCA (b) XI decomposed by IMCA(c) XB decomposed by IMT<iteration 600> 
(d) XI decomposed by IMT<iteration 600> (e) XB decomposed by proposed method              

(f) XI decomposed by proposed method 
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(a)                                                                                       (b) 

 

       
(c)                                                                                       (d) 

 

        
(e)                                                                                       (f) 

 

Fig. 8. Comparison Results of LSMIS3 Decomposition:  
(a) XB decomposed by IMCA  (b) XI decomposed by IMCA (c) XB decomposed by IMT<iteration 600> 

(d) XI decomposed by IMT<iteration 600> (e) XB decomposed by proposed method            

  (f) XI decomposed by proposed method 
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(a)                                                                                       (b) 

 

         
(c)                                                                                       (d) 

         
(e)                                                                                       (f) 

Fig. 9. Comparison Results of LASIS  Decomposition:  
(a) XB decomposed by IMCA (b) XI decomposed by IMCA(c) XB decomposed by IMT<iteration 600> 

(d) XI decomposed by IMT<iteration 600> (e) XB decomposed by proposed method             

 (f) XI decomposed by proposed method 
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(a)                                                           (b)                                                         (c) 

 
Fig. 10. Pixel values analysis after decomposition by proposed method: (a) Original LSMIS data 

(b) XB decomposed by proposed method (c) XI decomposed by proposed method 
 
 

The quality of IHI image decomposition, the times of iteration, and the efficiency of the 
three methods are all calculated for comparison. Fig. 6-9 have shown the experimental results 
of LSMIS and LASIS IHI images decomposed by IMCA, IMT and the proposed method. 
From the experimental results, it is obviously seen that the background layers decomposed by 
IMCA still have residual interference stripes at the top and bottom, while the interference 
stripe layers decomposed by IMT are not clear enough. Compared with the above methods, 
background layer decomposed by the proposed method will be smoother, and the interference 
stripe layers decomposed by the proposed method will be cleaner enough with less 
background signals. Fig. 10 shows the decomposed results by means of the row-pixel values, 
and from the red frames (interference stripes part) we can obviously see the effect of the 
proposed method for LSMIS IHI decomposition, which can move the interference stripes from 
Fig. 10(a) to Fig. 10(c), and provide a clean background layer in Fig. 10(b).  

Quantitative results of experimental comparison are shown in Table 1, to get the above 
visual effect, the iteration times needed for IMCA, IMT and proposed method are 15, 600 
(Quantitative results of 400 iteration times for IMCA are also shown for comparison) and 8 
respectively. The corresponding total variation of XB in horizontal direction and total variation 
of XI in horizontal direction are also shown. Quantitative results of Table 1 prove the proposed 
method not only can improve the quality of decomposed results, but only can reduce the 
iteration times significantly and make the decomposition much more efficient. 
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Table 1. Quantitative Comparison of LSMIS IHI Decomposition 

 
LSMIS1 

IMCA IMT Proposed 

Iteration times 15 400 600 8 

Runtime (s) 13. 814790 9.768697 14.875874 0.436690 

Total variation of XB in 
horizontal direction 

7.3469e+06 7.7183e+06 6.6424e+06 9.3406e+05 

Total variation of XI in 
vertical direction 

3.1813e+07 6.8651e+07 6.6094e+07 3.8866e+05 

Value of the objective 
function including the 

fidelity term 
1.3069e+09 1.7283e+10 1.6627e+10 1.1119e+08 

 
LSMIS2 

IMCA IMT Proposed 

Iteration times 15 400 600 8 

Runtime (s) 14. 127091 9.697143 15.425519 0.486476 

Total variation of XB in 
horizontal direction 

1.2998e+07 1.0435e+07 8.6132e+06 1.3484e+06 

Total variation of XI in 
vertical direction 

3.4853e+07 1.0259e+08 1.0003e+08 6.0367e+05 

Value of the objective 
function including the 

fidelity term 
1.8741e+09 2.5808e+10 2.5141e+10 1.7116e+08 

 
LSMIS3 

IMCA IMT Proposed 

Iteration times 15 400 600 8 

Runtime (s) 14.016324 9.823895 14.985148 0.430105 

Total variation of XB in 
horizontal direction 

5.1702e+06 4.5709e+06 3.1376e+06 6.0186e+05 

Total variation of XI in 
vertical direction 

3.2796e+07 2.9492e+07 2.8901e+07 3.2986e+05 

Value of the objective 
function including the 

fidelity term 
5.2830e+08 7.4462e+09 7.2769e+09 9.1506e+07 

 
LASIS 

IMCA IMT Proposed 

Iteration times 15 400 600 8 

Runtime (s) 3.905874 2.060725 3.117673 0.104174 

Total variation of XB in 
horizontal direction 

1.9134e+06 1.0975e+06 7.5844e+05 1.9630e+05 

Total variation of XI in 
vertical direction 

8.1270e+05 3.8023e+06 3.6252e+06 1.0818e+05 
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Value of the objective 
function including the 

fidelity term 
6.8147e+07 9.6902e+08 9.1967e+08 2.9997e+07 

6. Conclusions and Prospect 
Interference hyperspectral image data with high resolution, which can get the spectral and 

spatial information of the observed targets, has been widely used in many research fields. In 
this paper, a new method based on split Bregman iteration is proposed for decomposition of 
interference hyperspectral image data. The decomposition methods of IMCA and IMT are 
adopted for comparison with the proposed method. Experimental results have proved that the 
proposed method can reduce the iteration times which make the decomposition much more 
efficient than the existing decomposition methods.  
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