• 제목/요약/키워드: sparse

검색결과 1,176건 처리시간 0.023초

Sparse ICA: 자연영상의 효율적인 코딩\ulcorner (SPARSE ICA: EFFICIENT CODING OF NATURAL SCENES/)

  • 최승진;이오영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.470-472
    • /
    • 1999
  • Sparse coding은 최소한의 active한 (non-orthogonal) basis vector를 이용하여 데이터를 표시하는 하나의 방법이다. Sparse coding에서 basis coefficient들이 statistically independent 하다는 constraint를 주기에 sparse coding은 independent component analysis(ICA)와 밀접한 관계를 가지고 있다. 본 논문에서는 sparse representation을 위하여 super-Gaussian prior를 이용한 ICA, 즉 sparse ICA 방법을 제시한다. Sparse ICA 방법을 이용하여 natural scenes의 basis vector를 찾고 이와 sparse coding과의 관계를 고찰한다. 여러 가지 super-Gaussian prior들을 고려하지 않고 이들이 ICA에 미치는 영향에 대해 살펴본다.

  • PDF

A Novel Multiple Kernel Sparse Representation based Classification for Face Recognition

  • Zheng, Hao;Ye, Qiaolin;Jin, Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1463-1480
    • /
    • 2014
  • It is well known that sparse code is effective for feature extraction of face recognition, especially sparse mode can be learned in the kernel space, and obtain better performance. Some recent algorithms made use of single kernel in the sparse mode, but this didn't make full use of the kernel information. The key issue is how to select the suitable kernel weights, and combine the selected kernels. In this paper, we propose a novel multiple kernel sparse representation based classification for face recognition (MKSRC), which performs sparse code and dictionary learning in the multiple kernel space. Initially, several possible kernels are combined and the sparse coefficient is computed, then the kernel weights can be obtained by the sparse coefficient. Finally convergence makes the kernel weights optimal. The experiments results show that our algorithm outperforms other state-of-the-art algorithms and demonstrate the promising performance of the proposed algorithms.

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

Face Recognition Robust to Occlusion via Dual Sparse Representation

  • Shin, Hyunhye;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권2호
    • /
    • pp.46-48
    • /
    • 2016
  • Purpose In face reocognition area, estimating occlusion in face images is on the rise. In this paper, we propose a new face recognition algorithm based on dual sparse representation to solve this problem. Method Each face image is partitioned into several pieces and sparse representation is implemented in each part. Then, some parts that have large sparse concentration index are combined and sparse representation is performed one more time. Each test sample is classified by using the final sparse coefficient where correlation between the test sample and training sample is applied. Results The recognition rate of the proposed algorithm is higher than that of the basic sparse representation classification. Conclusion The proposed method can be applied in real life which needs to identify someone exactly whether the person disguises his face or not.

Circular sparse network에서 분할법을 이용한 최단거리 결정 (Finding the shortest distance between all pairs of nodes in circular sparse networks by decomposition algorithm)

  • Jun-Hong Kim;Young-Bae Chung
    • 산업경영시스템학회지
    • /
    • 제26권1호
    • /
    • pp.47-53
    • /
    • 2003
  • 이 논문은 환(環)을 형성하는 부분네트웍들로 이루어진 sparse network의 특수한 형태에서 최단거리 결정을 위한 효율적인 앨고리즘을 제안한다. 제시된 앨고리즘은 소위 비환(非換) 형태의 sparse network에 대한 최단거리 결정 앨고리즘의 확장이라 할 수 있다. 도우넛 형태를 갖는 sparse network에 대해 최단거리 결정을 위한 접근법으로 하나는 정점제거 방법이고, 다른 하나는 선분제거 방법이다. 여기서 제안된 앨고리즘은 일반적인 n-degree circular sparse network으로 확대될 수 있다.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

  • Wang, Chen;Fang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.4835-4855
    • /
    • 2018
  • In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

Sparse 채널에서 최소평균오차 경계값 분석을 통한 채널 추정 기법의 성능 비교 (Performance evaluation of estimation methods based on analysis of mean square error bounds for the sparse channel)

  • 김현수;김재영;박건우;최영관;정재학
    • 한국위성정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.53-58
    • /
    • 2012
  • 본 논문에서는 sparse 채널에서 대표적인 채널 추정 기법들의 오차 성능을 비교 및 분석한다. 오차 성능을 비교하기 위해 크라머-라오 경계를 이용하여 최소평균자승오차 추정기법의 하한 경계를 구하고 이를 정합 추적 기법의 상한 경계와 분석한다. 분석 결과로부터 추정 탭 개수와 신호 대 잡음비에 따라 기존에 sparse 채널에서 효율적인 추정기법으로 알려진 정합 추적 기법보다 최소평균 자승오차 추정기법의 오차가 적을 수 있음을 보인다. 레일리이 페이딩 분포를 갖는 두 개의 sparse 채널에 대한 전산모의실험 결과 신호 대 잡음비에 따라 두 추정 기법의 오차 성능이 반전되는 경우를 보였다.

전력계통 해석에 유용한 "스파스"행렬법에 관한 연구 (A Study on the Sparse Matrix Method Useful to the Solution of a Large Power System)

  • 한만춘;신명철
    • 전기의세계
    • /
    • 제23권3호
    • /
    • pp.43-52
    • /
    • 1974
  • The matrix inversion is very inefficient for computing direct solutions of the large spare systems of linear equations that arise in many network problems as a large electrical power system. Optimally ordered triangular factorization of sparse matrices is more efficient and offers the other important computational advantages in some applications with this method. The direct solutions are computed from sparse matrix factors instead of a full inverse matrix, thereby gaining a significant advantage is speed and computer memory requirements. In this paper, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the solutions may be applied directly to sove the load flow in an electrical power system. The result of this study should lead to many aplications including short circuit, transient stability, network reduction, reactive optimization and others.

  • PDF

스파스벡터법을 위한 서열산법의 최적화 (An Optimization of Ordering Algorithm for Sparse Vector Method)

  • 신명철;이준모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.189-194
    • /
    • 1989
  • The sparse vector method is more efficient than conventional sparse matrix method when solving sparse system. This paper considers the structural relation between factorized L and inverse of L and presents a new ordering algorithm for sparse vector method. The method is useful in enhancing the sparsity of the inverse of L while preserving the aparsity of matrix. The performance of algorithm is compared with conventional algorithms by means of several power system.

  • PDF