• Title/Summary/Keyword: span number

Search Result 550, Processing Time 0.025 seconds

Research and practice of health monitoring for long-span bridges in the mainland of China

  • Li, Hui;Ou, Jinping;Zhang, Xigang;Pei, Minshan;Li, Na
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.555-576
    • /
    • 2015
  • The large number of long-span bridges constructed in China motivates the applications of structural health monitoring (SHM) technology. Many bridges have been equipped with sophisticated SHM systems in the mainland of China and in Hong Kong of China. Recently, SHM technology has been extended to field test systems. In this view, SHM can serve as a tool to develop the methods of life-cycle performance design, evaluation, maintenance and management of bridges; to develop new structural analysis methods through validation and feedback from SHM results; and to understand the behavior of bridges under natural and man-made disasters, rapidly assess the damage and loss of structures over large regions after disasters, e.g., earthquake, typhoon, flood, etc. It is hoped that combining analytical methods, numerical simulation, small-scale tests and accelerated durability tests with SHM could become the main engine driving the development of bridge engineering. This paper demonstrates the above viewpoint.

Shear strengthening of RC beams with Basalt Fiber Reinforced Polymer (BFRP) composites

  • Kar, S.;Biswal, K.C.
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.93-104
    • /
    • 2020
  • Basalt fiber is an eco-friendly fiber and comparatively newer to the world of fiber-reinforced polymer (FRP) composites. A limited number of studies have been reported in the literature on the strengthening of reinforced concrete (RC) beams with basalt fiber reinforced polymer (BFRP). The present experimental work explores the feasibility of using the BFRP strips for shear strengthening of the RC beams. The strengthening schemes include full wrap and U-wrap. A simple mechanical anchorage scheme has been introduced to prevent the debonding of U-wrap as well as to utilize the full capacity of the BFRP composite. The effect of varying shear span-to-effective depth (a/d) ratio on the behavior of shear deficient RC beams strengthened with BFRP strips under different schemes is examined. The RC beams were tested under a four-point loading system. The study finds that the beams strengthened with and without BFRP strips fails in shear for a/d ratio 2.5 and the enhancement of the shear capacity of strengthened beams ranges from 5% to 20%. However, the strengthened beams fail in flexure, and the control beam fails in shear for a higher a/d ratio, i.e., 3.5. The experimental results of the present study have been compared with the analytical study and found that the latter gives conservative results.

A Study on Cable Anchor System in Cable-Stayed Railway Bridge (철도용 사장교의 케이블 정착구조에 관한 연구)

  • Kong, Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1229-1234
    • /
    • 2005
  • Since the 20th century, the business of railway was invaded by the invention of airplanes and vehicles in the field of the transportation of passenger and commercial products, however, in the 21st century, the fervent development of a high speed railway made possible the huge capacity of transporting passengers and commercial freight, so the railway industry is facing a new era of railway revolution. The 200 years old railway tradition includes the history of railway bridges built in areas of river, valley and metropolitan region and in that, the number of constructions of railway bridges that is composed of cable-stayed bridges is increasing as one of the most optimal bridges considering the quality of materials and the span of continuous-welded long rail. Thanks to the minimized effects of the fixed load on the stiffening girder section by delivering the fixed load which is applied to the pylon with the composition of elastic supporting points by using cables and the effective structural system that can throughly resist extra loads in addition to fixed load, the long-extended span of a bridge becomes possible. In this structural system, the load that is applied to the stiffening girder section forms a now pattern and in the process of these load delivery, there will be a necessity to examine the concentration of stress occurred in the cable-anchor system of the cable.

  • PDF

Seismic hazard assessment for two cities in Eastern Iran

  • Farzampour, Alireza;Kamali-Asl, Arash
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.681-697
    • /
    • 2015
  • Iran as one of the countries located on the Alpine-Himalayan seismic belt has recently experienced a few number of catastrophic earthquakes. A well-known index of how buildings are affected by earthquakes is through assessment of probable Peak Ground Acceleration (PGA) and structures' response spectra. In this research, active faults around Kerman and Birjand, two major cities in eastern parts of Iran, have been considered. Seismic catalogues are gathered to categorize effects of surrounding faults on seismicity of the region. These catalogues were further refined with respect to time and space based on Knopoff-Gardner algorithm in order to increase statistical independency of events. Probabilistic Seismic Hazard Analysis (PSHA) has been estimated for each of cities regarding 50, 100, 200 and 500 years of structures' effective life-span. These results subsequently have been compared with Deterministic Seismic Hazard Analysis (DSHA). It has been observed that DSHA not necessarily suggests upper bound of PSHA results. Furthermore, based on spectral Ground Motion Prediction Equations (GMPEs), Uniform Hazard Spectra (UHS) and spectral acceleration were provided for 2% and 10% levels of probability of exceedance. The results show that increasing source-to-site distance leads to spectral acceleration reduction regarding each fault. In addition, the spectral acceleration rate of variation would increase if the source-to-site distance decreases.

A Study on Stress Analysis of Cable Anchor System in Cable-Stayed Railway Bridge (철도용 사장교의 케이블 정착구조에 관한 형식별 FEM해석 연구)

  • Park, Ji-Ho;Kong, Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.552-557
    • /
    • 2006
  • Since the 20th century, the business of railway was invaded by the invention of airplanes and vehicles in the field of the transportation of passenger and commercial products, however, in the 21st century, the fervent development of a high-speed railway made possible the huge capacity of transporting passengers and commercial freight, so the railway industry is facing a new era of railway revolution. The 200 years old railway tradition includes the history of railway bridges built in areas of river, valley and metropolitan region and in that, the number of constructions of railway bridges that is composed of cable-stayed bridges is increasing as one of the most optimal bridges considering the quality of materials and the span of continuous-welded long rail. Thanks to the minimized effects of the fixed load on the stiffening girder section by delivering the fixed load which is applied to the pylon with the composition of elastic supporting-points by using cables and the effective structural system that can throughly resist extra loads in addition to fixed load, the long-extended span of a bridge becomes possible. In this structural system, the load that is applied to the stiffening girder section forms a flow pattern and in the process of these load delivery, there will be a necessity to examine the concentration of stress occurred in the cable-anchor system of the cable.

  • PDF

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges

  • Lonetti, Paolo;Pascuzzo, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.847-866
    • /
    • 2014
  • This paper describes a formulation to predict optimum post-tensioning forces and cable dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to both dead and live load configurations, taking into account design constrains concerning serviceability and ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, under live loads, for each cable elements, the lowest required cross-section area is determined, which verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by using a refined formulation of the bridge components, taking into account of geometric nonlinearities involved in the bridge components. The results demonstrate that the proposed method can be easily utilized to predict the cable dimensioning also in the framework of long span bridge structures, in which typically more complexities are expected in view of the large number of variables involved in the design analysis.

A Study on the axial force in CWR with Turnout according to Distance between Bridge Expansion Joint and Turnout (교량신축과 분기기의 이격거리에 따른 교량상 분기기 축력특성 연구)

  • Choi, Jin-Yu;Lee, Hyun-Jeong;Yang, Shin-Chu;Jeong, Jang-Yong;Yu, Jin-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1050-1055
    • /
    • 2008
  • The demand on a turnout layed on a bridge is rising owing to the increasing number of stations on the viaduct. And also the demand on a turnout with CWR is rising to upgrade running speed of the passing train. A CWR with turnout is subjected to additional axial force induced by the thermal expansion of bridge as well as lead rail of turnout. The additional axial force is closely related with the distance between bridge expansion joint and turnout when it is located near the movable bearing of bridge, and it is required to keep some distance to prevent excessive axial stress in CWR. But, there is no guideline in specification for the proper distance from E.J. to turnout, and it caused problem in planning turnout or bridge. So, it this study, the parametric study to investigate the effect on axial stress in CWR with turnout according to span length and distance between bridge expansion joint and turnout was performed. From the results of numerical analysis, it was found out that $5{\sim}30m$ distance is required to prevent excessive axial in CWR for span length less 90m.

  • PDF

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Microfluidic Preparation of Monodisperse Multiple Emulsion using Hydrodynamic Control (미세채널에서 수력학적 조절을 통한 단분산성 다중 액적 생성)

  • Kang, Sung-Min;Choi, Chang-Hyung;Hwang, Sora;Jung, Jae-Min;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.733-737
    • /
    • 2012
  • This study reports the microfluidic preparation of monodisperse multiple emulsions using hydrodynamic control. To generate multiple emulsions, we fabricate a microfluidic capillary device based on co-flowing stream without any surface modification of microchannels. Based on the system, we can successfully generate multiple emulsions (W/O/W) using water containing 0.5 wt% Tween 20, n-hexadecane with 5 wt% Span 80, and 10 wt% poly (vinyl alcohol) (PVA) aqueous solution, respectively. Furthermore, we control the number of inner droplets by modulation of flow rate of inner fluid at fixed flow rate of middle and outer fluid. The multiple emulsions having precisely controlled inner droplets' size and number can be applicable for multiple chemical reactions as an isolated microreactor.

Optimum Salinity and Temperature Condition for Mass Culture of the Brackish Water Flea, Diaphanosoma celebensis (기수산 물벼룩, Diaphanosoma celebensis의 대량배양을 위한 최적 염분 및 수온 조건)

  • Park, Jin-Chul;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • This study investigated the optimum salinity and temperature conditions for mass culture of the brackish water flea, Diaphanosoma celebensis. Community and individual cultures of flea were maintained in 1 L beakers and 3 mL vessels (of a 12-well culture plate), respectively, and fed green algae, Tetraselmis suecica. In salinity experiments ranging from 5 to 34 psu, continuous growth of flea populations was found up to 34 psu. However, the specific growth rate and life span of females showed decreasing tendencies with the increase of salinity. The highest maximum density and offspring number were 33.6 individuals (ind.)/mL and 55.3 ind. at 10 psu, respectively. In the temperature experiments ranging from 20 to $40^{\circ}C$, population growth of D. celebensis increased continuously until $35^{\circ}C$ and then decreased over $40^{\circ}C$. The specific growth rate was significantly higher at 25 and $30^{\circ}C$ than at 20 and $40^{\circ}C$. Female life span tended to decrease with temperature increase. The highest maximum density and offspring number were 52.3 ind./mL and 46.0 ind. at $30^{\circ}C$, respectively. These results suggest that the optimum salinity and temperature for mass culture of D. celebensis may be 10 psu and $30^{\circ}C$, respectively.