DOI QR코드

DOI QR Code

Shear strengthening of RC beams with Basalt Fiber Reinforced Polymer (BFRP) composites

  • Kar, S. (Department of Civil Engineering, National Institute of Technology) ;
  • Biswal, K.C. (Department of Civil Engineering, National Institute of Technology)
  • Received : 2018.12.12
  • Accepted : 2020.07.23
  • Published : 2020.08.25

Abstract

Basalt fiber is an eco-friendly fiber and comparatively newer to the world of fiber-reinforced polymer (FRP) composites. A limited number of studies have been reported in the literature on the strengthening of reinforced concrete (RC) beams with basalt fiber reinforced polymer (BFRP). The present experimental work explores the feasibility of using the BFRP strips for shear strengthening of the RC beams. The strengthening schemes include full wrap and U-wrap. A simple mechanical anchorage scheme has been introduced to prevent the debonding of U-wrap as well as to utilize the full capacity of the BFRP composite. The effect of varying shear span-to-effective depth (a/d) ratio on the behavior of shear deficient RC beams strengthened with BFRP strips under different schemes is examined. The RC beams were tested under a four-point loading system. The study finds that the beams strengthened with and without BFRP strips fails in shear for a/d ratio 2.5 and the enhancement of the shear capacity of strengthened beams ranges from 5% to 20%. However, the strengthened beams fail in flexure, and the control beam fails in shear for a higher a/d ratio, i.e., 3.5. The experimental results of the present study have been compared with the analytical study and found that the latter gives conservative results.

Keywords

References

  1. Abdel-kareem, A.H. (2014), "Shear strengthening of reinforced concrete beams with rectangular web openings by FRP composites", Adv. Concrete Constr., 2(4), 281-300. http://dx.doi.org/10.12989/acc.2014.2.4.281.
  2. Abdul Samad, A.A., Ali, N., Mohamad, N., Jayaprakash, J., Tee, K.F. and Mendis, P. (2017), "Shear strengthening and shear repair of 2-Span continuous RC beams with CFRP strips", J. Compos. Constr., 21(3), 1-12. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000756.
  3. Abu-Obeidah, A.S., Abdalla, J.A. and Hawileh, R.A. (2019), "Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates", Adv. Concrete Constr., 7(4), 249-262. https://doi.org/10.12989/acc.2019.7.4.249.
  4. ACI 440.2R-08 (2008), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures.
  5. Adhikary, B.B., Mutsuyoshi, H. and Ashraf, M. (2004), "Shear strengthening of reinforced concrete beams using fiber-reinforced polymer sheets with bonded anchorage", ACI Struct. J., 101(5), 660-668.
  6. Al-Rousan, R.Z. and Issa, M.A. (2016), "The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber-reinforced polymer composites", Adv. Struct. Eng., 19(11), 1769-1779. https://doi.org/10.1177/1369433216649386.
  7. Al-Sulaimani, G.J., Sharif, A., Basunbul, I.A., Baluch, M.H. and Ghaleb, B.N. (1994), "Shear repair for reinforced concrete by fiberglass plate bonding", ACI Struct. J., 91(4), 458-464.
  8. Al-Tersawy, S.H. (2013), "Effect of fiber parameters and concrete strength on shear behavior of strengthened RC beams", Constr. Build. Mater., 44, 15-24. https://doi.org/10.1016/j.conbuildmat.2013.03.007.
  9. Altin, S., Anil, O., Topta, T. and Kara, E.M. (2011), "Retrofitting of shear damaged RC beams using CFRP strips", Steel Compos. Struct., 11(3), 207-223. https://doi.org/10.12989/scs.2011.11.3.207.
  10. Bae, S.W., Tann, B.D. and Belarbi, A. (2012), "Size effect of reinforced concrete beams strengthened in shear with externally bonded CFRP sheets", Proc. the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012), 1-8.
  11. Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583. https://doi.org/10.12989/sem.2017.63.5.575.
  12. Breveglieri, M., Aprile, A. and Barros, J.A.O. (2016), "RC beams strengthened in shear using the embedded Through-section technique: experimental results and analytical formulation", Compos. Part B Eng., 89, 266-281. https://doi.org/10.1016/j.compositesb.2015.11.023.
  13. Cao, S.Y., Chen, J.F., Teng, J.G., Hao, Z. and Chen, J. (2005), "Debonding in RC beams shear strengthened with complete FRP wraps", J. Compos. Constr., 9(5), 417-428. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(417).
  14. Chen, W., Pham, T.M., Sichembe, H., Chen, L. and Hao, H. (2018), "Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet", Compos. Part B Eng., 134, 114-126. https://doi.org/10.1016/j.compositesb.2017.09.053.
  15. Deak, T. and Czigany, T. (2009), "Chemical composition and mechanical properties of basalt and glass fibers: a comparison", Text. Res. J., 79(7), 645-651. https://doi.org/10.1177/0040517508095597.
  16. Duic, J., Kenno, S. and Das, S. (2018), "Flexural rehabilitation and strengthening of concrete beams with BFRP composite", J. Compos. Constr., 22(4), 1-11. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000851.
  17. Fiore, V., Scalici, T., Di Bella, G. and Valenza, A. (2015), "A review on basalt fibre and its composites", Compos. Part B Eng., 74, 74-94. https://doi.org/10.1016/j.compositesb.2014.12.034.
  18. Godat, A., Qu, Z., Lu, X.Z., Labossiere, P., Ye, L.P. and Neale, K.W. (2010), "Size effects for reinforced concrete beams strengthened in shear with CFRP strips", J. Compos. Constr., 14(3), 260-271. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000072.
  19. Grande, E., Imbimbo, M. and Rasulo, A. (2009), "Effect of transverse steel on the response of RC beams strengthened in shear by FRP: experimental study", J. Compos. Constr., 13(5), 405-414. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:5(405).
  20. Ianniruberto, U. and Imbimbo, M. (2004), "Role of fiber reinforced plastic sheets in shear response of reinforced concrete beams: experimental and analytical results", J. Compos. Constr., 8(5), 415-424. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(415).
  21. Jamshaid, H. and Mishra, R. (2016), "A green material from rock: basalt fiber - a review", J. Text. Inst., 107(7), 923-937. https://doi.org/10.1080/00405000.2015.1071940.
  22. Keskin, R.S.O., Arslan, G. and Sengun, K. (2017), "Influence of CFRP on the shear strength of RC and SFRC beams", Constr. Build. Mater., 153, 16-24. https://doi.org/10.1016/j.conbuildmat.2017.06.170.
  23. Khalifa, A. and Nanni, A. (2002), "Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites", Constr Build Mater., 16(3), 135-146. https://doi.org/10.1016/S0950-0618(02)00002-8.
  24. Leung, C.K.Y., Chen, Z., Lee, S., Ng, M., Xu, M. and Tang, J. (2007), "Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips", J. Compos. Constr., 11(5), 487-496. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(487).
  25. Li, W. and Leung, C.K.Y. (2016), "Shear span-depth ratio effect on behavior of RC beam shear strengthened with full-wrapping FRP strip", J. Compos. Constr., 20(3), 04015067. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000627.
  26. Li, W. and Leung, C.K.Y. (2017), "Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips", Compos. Struct., 177, 141-157. https://doi.org/10.1016/j.compstruct.2017.06.059.
  27. Lihua, H., Li, Y. and Yuefang, W. (2013), "Strengthening effects of BFRP on reinforced concrete beams", J. Southeast Univ., 29(2), 182-186.
  28. Morozov, N.N., Bakunov, V.S., Morozov, E.N., Aslanova, L.G., Granovskii, P.A., Prokshin, V.V. and Zemlyanitsyn, A.A. (2001), "Materials based on basalts from the european north of Russia", Glas. Ceram., 58(3), 24-27. https://doi.org/10.1023/A:1010947415202.
  29. Nguyen-Minh, L. and Rovnak, M. (2015), "Size effect in uncracked and pre-cracked reinforced concrete beams shear-strengthened with composite jackets", Compos. Part B Eng., 78, 361-376. https://doi.org/10.1016/j.compositesb.2015.02.035.
  30. Panda, K.C., Bhattacharyya, S.K. and Barai, S.V. (2013), "Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams", Struct. Eng. Mech., 47(1), 75-98. http://dx.doi.org/10.12989/sem.2013.47.1.075
  31. Panjehpour, M., Abdullah, A., Ali, A., Voo, Y.L. and Aznieta, F.N. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrtee, 13(1), 135-165. https://doi.org/10.12989/cac.2014.13.1.135.
  32. Ramezanpour, M., Morshed, R. and Eslami, A. (2018), "Experimental investigation on optimal shear strengthening of RC beams using Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars", Struct. Eng. Mech., 67(1), 45-52. http://dx.doi.org/10.12989/sem.2018.67.1.045.
  33. Shekarchi, W.A., Ghannoum, W.M. and Jirsa, J.O. (2018), "Use of anchored carbon fiber-reinforced polymer strips for shear strengthening of large girders", ACI Struct. J., 115(1), 281-291.
  34. Shomali, A., Mostofinejad, D. and Esfahani, M.R. (2019), "Experimental study on effect of EBRIG shear strengthening method on the behavior of RC beams", Adv. Concrete Constr., 8(2), 145-154. https://doi.org/10.12989/acc.2019.8.2.145.
  35. Shuraim, A.B. (2011), "Efficacy of CFRP configurations for shear of RC beams : experimental and NLFE", Struct. Eng. Mech., 39(3), 361-382. http://dx.doi.org/10.12989/sem.2011.39.3.361.
  36. Sim, J., Park, C. and Moon, D.Y. (2005), "Characteristics of basalt fiber as a strengthening material for concrete structures", Compos. Part B Eng., 36(6-7), 504-512. https://doi.org/10.1016/j.compositesb.2005.02.002.
  37. Sundarraja, M.C. and Rajamohan, S. (2009), "Strengthening of RC beams in shear using GFRP inclined strips - an experimental study", Constr. Build. Mater., 23(2), 856-864. https://doi.org/10.1016/j.conbuildmat.2008.04.008.

Cited by

  1. A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.397