• 제목/요약/키워드: span length

검색결과 792건 처리시간 0.028초

PSSC 거더 교량의 한계상태별 신뢰도 비교 (Comparison of Reliability of PSSC Girder Bridge for Different Limit States)

  • 황철성;백인열
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.171-180
    • /
    • 2007
  • 처짐, 응력 및 휨강도 한계상태에 대한 PSSC(prestressed steel and concrete)거더의 신뢰도해석을 수행한다. PSSC 거더는 시공비용과 형하공간의 확보 면에서 지간 40m이상인 교량에 적용하는데 커다란 장점을 가지고 있는 형식이다. 이 논문에서는 다양한 지간, 단면 및 설계 응력수준을 가지는 PSSC 거더를 설계하여 중앙점 처짐, 응력 및 단면 휨모멘트 해석을 수행하고, 각각에 대한 한계상태를 가정한 후, Monte-Carlo 시뮬레이션과 Rackwitz-Fiessler 방법을 이용하여 신뢰도지수를 구한다. 결과를 분석하면 PSSC 거더에 대한 처짐한계상태는 응력한계상태보다 적절하게 큰 신뢰도지수 값을 보이며, 휨강도에 대한 신뢰도지수가 매우 큼을 알 수 있다.

역V형 특수가새골조의 반응수정계수 (Response Modification Factors of Inverted V-type Special Concentrically Braced Frames)

  • 김진구;남광희
    • 한국지진공학회논문집
    • /
    • 제8권1호
    • /
    • pp.29-37
    • /
    • 2004
  • 초과강도계수와 연성계수는 현행 내진기준에서 사용되는 반응수정계수를 결정하기 위한 두 가지 중요한 계수이다. 본 논문에서는 다양한 층수 및 경간을 갖는 역V형 특수 중심가새골조의 비선형 정적 해석을 수행하여 초과강도계수와 연성계수를 구하고 이를 이용하여 반응 수정계수를 산정하였다. 해석결과에 따르면 저층 구조물의 경우 IBC-2000에서 제시한 값보다 큰 반응수정계수 값을 가지며, 중층 이상의 경우 기준에서 제시한 값보다 작은 값으로 나타났다. 또한 초과강도계수와 연성계수는 구조물의 높이가 감소할수록, 스팬의 길이가 증가할수록 증가하는 것으로 나타났다.

Congestion effect on maximum dynamic stresses of bridges

  • Samanipour, Kianoosh;Vafai, Hassan
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.111-135
    • /
    • 2015
  • Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper presents how to model congestion on bridges and how the maximum dynamic stress of bridges change during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is applied to the maximum static moment under static loading. This paper presents an algorithm to solve the governing equation of the bridge as well as the equations of motions of two real European trucks with different speeds, simultaneously. It will be shown, considering congestion in eight case studies, the maximum dynamic stress and how far from the mid-span it occurs during the passing of one or two trucks with different speeds. The congestion effect on the maximum dynamic stress of bridges can make a significant difference in the magnitude. By finite difference method, it will be shown that where vehicle speeds are considerably higher, for example in the case of railway bridges which have more than one railway line or in the case of multiple lane highway bridges where congestion is probable, current designing codes may predict dynamic stresses lower than actual stresses; therefore, the consequences of a full length analysis must be used to design safe bridges.

PSC 거더교의 하중횡분배에 관한 연구 (Lateral Load Distribution for Prestressed Concrete Girder Bridge)

  • 박문호;박정활;김진규
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.157-166
    • /
    • 2001
  • The purpose of this study is to examine the accuracy of the code provisions on lateral load distribution factors of prestressed concrete girder bridges. Most designers in Korea use the lever method or lateral load distribution formula in the existing design codes. However, the methods do not account for the effect of bridge skew or direction of diaphragm. Therefore, this study analysed the prestressed concrete girder bridge with grillage model for various girder spacings, directions of diaphragms, span lengths, and skews, and compared the results with those of existing design code. It has been found that lateral load distribution factors were proportional to the girder spacing while they were not significantly affected by the change of span length, direction of diaphragm, and skew. For bending moments, lateral load distribution factors from the grillage analysis were 60%~68% of those from Korean bridge design code. Therefore, the code provisions result in very conservative design. For support reactions, however, lateral load distribution factors from the grillage analysis were slightly greater than those from Korean bridge design code. Therefore, the capacity of bearings of the bridge with a large skew should be determined by grillage analysis.

  • PDF

석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능 (Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate)

  • 정수영;윤현도;박완신
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

Research on static and dynamic behaviors of PC track beam for straddle monorail transit system

  • Yang, Yongqing;Yang, Deng;Gou, Hongye;Bao, Yi
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.437-452
    • /
    • 2019
  • In this study, in-situ static and dynamic tests of four pre-stressed concrete (PC) track beams with different span lengths and curvatures in a straddle monorail transit system were reported. In the static load tests, the strain and deflection at critical sections of the PC track beams were measured to determine the load bearing capacity and stiffness. The dynamic responses of strain, deflection, acceleration, and displacement at key positions of the PC track beams were measured under different train speeds and train loads to systematically study the dynamic behaviors of the PC track beams. A three-dimensional finite element model of the track beam-vehicle coupled vibration system was established to help understand the dynamic behavior of the system, and the model was verified using the test results. The research results show that the curvature, span length, train speed, and train loads have significant influence on the dynamic responses of the PC track beams. The dynamic performance of the PC track beams in the curve section is susceptible to dynamic loads. Appropriate train loads can effectively reduce the impact of the train on the PC track beam. The PC track beams allow good riding comfort.

Dynamic response of an overhead transmission tower-line system to high-speed train-induced wind

  • Zhang, Meng;Liu, Ying;Liu, Hao;Zhao, Guifeng
    • Wind and Structures
    • /
    • 제34권4호
    • /
    • pp.335-353
    • /
    • 2022
  • The current work numerically investigates the transient force and dynamic response of an overhead transmission tower-line structure caused by the passage of a high-speed train (HST). Taking the CRH2C HST and an overhead transmission tower-line structure as the research objects, both an HST-transmission line fluid numerical model and a transmission tower-line structure finite element model are established and validated through comparison with experimental and theoretical data. The transient force and typical dynamic response of the overhead transmission tower-line structure due to HST-induced wind are analyzed. The results show that when the train passes through the overhead transmission tower-line structure, the extreme force on the transmission line is related to the train speed with a significant quadratic function relationship. Once the relative distance from the track is more than 15 m, the train-induced force is small enough to be ignored. The extreme value of the mid-span dynamic response of the transmission line is related to the train speed and span length with a significant linear functional relationship.

Exact and approximate solutions for free vibrations of continuous partial-interaction composite beams

  • Sun, Kai Q.;Zhang, Nan;Zhu, Qun X.;Liu, Xiao
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.531-543
    • /
    • 2022
  • An exact dynamic analytical method for free vibrations of continuous partial-interaction composite beams is proposed based on the Timoshenko beam theory. The main advantage of this method is that the independent shear deformations and rotary inertia of sub-beams are considered, which is more in line with the reality. Therefore, the accuracy of eigenfrequencies obtained by this method is significantly improved, especially for higher order modes, compared to the existing methods where the rotary angles of both sub-beams are assumed to be equal irrespective of the differences in the shear stiffness of each sub-beam. Furthermore, the solutions obtained by the proposed method are exact owing to no introduction of approximated displacement and force fields in the derivation. In addition, an exact analytical solution for the case of simply supported is obtained. Based on this, an approximate expression for the fundamental frequency of continuous partial-interaction composite beams is also proposed, which is useful for practical engineering applications. Finally, the practicability and effectiveness of the proposed method and the approximate expression are explored using numerical and experimental examples; The influence factors including the interfacial interaction, shear modulus ratio, span-to-depth ratio, and side-to-main span length ratio on the eigenfrequencies are presented and discussed in detail.

누에 나방에 있어서 한국산 겨우살이(Viscum album coloratum) 추출물의 생명연장 효과 (Effect of Korean Mistletoe (Viscum album coloratum) Extract (KME) on the Extensions of Life span in Silkworm Moth, Bombyx Mori)

  • 정회윤;이안나;김세중;박성민;송태준;고병웅;김영훈;안효선;유영춘;민병렬;김종배
    • 생약학회지
    • /
    • 제39권4호
    • /
    • pp.310-315
    • /
    • 2008
  • Viscum album coloratum (Korean mistletoe; KM) is a semi-parasitic plant growing on various trees. This plant hasbeen shown to possess a variety of biological functions such as immunomodulation, apoptosis-induction and antitumor activity. However, there is no information about how the extract of KM affects life span of the host. In this study, in order to examine the effect of KM on the longevity of the host, we investigated whether a Korean mistletoe extract (KME) was able to extend the life length in an experimental model using the spring silkworm moth of Bombyx mori (Lepidoptera bombycidae). We established a model test for survival in which all of the male and female moths died within 18 days after the beginning of the experiment. Mean survival time of female moths was longer than that of male moths. Both male and female moths fed with KME containing diet (200 or 400 ${\mu}g$/head/day) showed significantly higher mean survival times than those of the control moths. Studying the effect of KME on prolongation of mean survival time showed that male moths were more susceptible than female moths. The moths fed with KME-containing diet showed a slight decrease in body weight. Interestingly, however, no difference in food intake was observed between moths fed with KME-containing diet and those with control diet. In analysis for mRNA increase in the SIRT2 gene, a member of the Sir2 gene family playing important roles in regulation of cell death and prolongation of life span, moths fed with KME-containing diet showed a significant increase in SIRT2 gene expression. These results suggest that KME has a potential to extend the life span in Bombyx mori, and its effect is partly associated with increase in SIRT2 gene expression.

장대사장교의 지진거동 분석시 지반특성 및 파동전달효과를 고려한 설계기준 적용에 대한 고찰 (Study on Application of Wave Travelling Effect and Local Site Effect to Design Standard for Analysing Seismic Behavior of Long-Span Cable-Stayed Bridge)

  • 박연수;송영봉;현기환;이순남;양원열
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.167-174
    • /
    • 2008
  • 최근 국내에서 장대교량의 건설이 증가함에 따라 그에 대한 내진설계의 중요성도 증대되고 있다. 이와같은 여건을 반영하여 새로 개정된 케이블 강교량 설계지침(안)의 내진설계편에서 지진파의 파동전달효과와 지반특성효과를 일부 반영하였다. 본 연구에서는 국내 설계규정에 따라 사장교(주경간500m)의 다양한(균등입력, 파동전달효과, 파동전달효과+지반특성효과) 지진응답해석을 수행하여 설계적용시 문제점에 대하여 검토해 본 결과 장대교의 파동전달효과는 지지점간 거리가 짧은 경우에도 지반이 연약한 경우 큰 영향을 받는 것으로 나타났다. 한편 지반의 종류에 상관없이 파동전달효과와 함께 지점별로 지반특성을 고려한 해석이 그렇지 않은 해석결과보다 큰 값이 산출되었다. 따라서 장대교의 지진응답해석시 파동전달효과 및 지반특성효과의 적용에 대한 세심한 고려가 필요한 것으로 판단된다.