• 제목/요약/키워드: spalling properties

Search Result 157, Processing Time 0.03 seconds

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (화재시 하중재하에 따른 콘크리트의 열적특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Jung, Jae-Young;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.66-74
    • /
    • 2009
  • When a fire occurs, the concrete structure's strength decreases by the increasing temperature under the fire in certain condition of constant load. And, the ratio of the axial force is changed by such decreased strength so that the structure is deformed. In this research, considering such case, we have conducted an actual fire test for the concrete lining with constant loading condition and various fire conditions. The specimen adopts the shape condition for small practical specimen defined by the EFNARC and we used 24MPa, 40MPa and 50MPa to analyze the thermal properties by the strength. The ratio of loading is imposed by a certain loading condition based on 20% and 40% of the sectional stress in concrete and MHC Fire is selected to realize the thermal impact of the concrete by rapid increasing temperature. As the result of the experiment, in the same ratio of loading, the 50MPa specimen shows more cracks and spalling as time goes on. The area damaged by the fire, according to the functional criteria of the concrete lining under the fire in ITA, does not satisfy with the standard in lack of 50mm depth from the heating surface at total 200mm lining.

High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin (Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Do, Jeong-Yun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

Effect of thermal-induced microcracks on the failure mechanism of rock specimens

  • Khodayar, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • It is seldom possible that geotechnical materials like rocks and concretes found without joints, cracks, or discontinuities. Thereby, the impact of micro-cracks on the mechanical properties of them is to be considered. In the present study, the effect of micro-crack on the failure mechanism of rock specimens under uniaxial compression was investigated experimentally. For this purpose, thermal stress was used to induce micro-cracks in the specimens. Several cylindrical and disk shape specimens were drilled from granite collected from Zanjan granite mine, Iran. Some of the prepared specimens were kept in room temperature and the others were heated by a laboratory furnace to different temperature levels (200, 400, 600, 800 and 1000 degree Celsius). During the experimental tests, Acoustic Emission (AE) sensors were used to monitor specimen failure at the different loading sequences. Also, Scanning Electron Microscope (SEM) was used to distinguish the induced micro-crack by heating in the specimens. The fractographic analysis revealed that the thin sections heated to $800^{\circ}C$ and $1000^{\circ}C$ contain some induced micro-fractures, but in the thin sections heated to $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ have not been observed any micro-fracture. In the next, a comprehensive experimental investigation was made to evaluate mechanical properties of heated and unheated specimens. Results of experimental tests showed that induced micro-cracks significantly influence on the failure mode of specimens. The specimens kept at room temperature failed in the splitting mode, while the failure mode of specimens heated to $800^{\circ}C$ are shearing and the specimens heated to $1000^{\circ}C$ failed in the spalling mode. On the basis of AE monitoring, it is found that with increasing of the micro-crack density, the ratio of the number of shear cracks to the number of tensile cracks increases, under loading sequences.

Wear Mechanisum of Carbon Bearing BOF Refreactories (전로용 MgO-C질 내화벽돌의 손상요인)

  • 김의훈;오영우;이철수;김종성;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 1986
  • It was the first time the MgO-C brick was developed for the lining materials in the hot spots in electric are furnace in 1972. MgO-C brick is high registant to thermal and structural spalling. Futhermore for the reason that carbon is hard to react with slag and MgO is high fireproof MgO-C brick shows a high corrosion registance to slag attack compared with conventional basic refractories. Owing to their excellent properties the use of MgO-C refractories are being developed widely in the field of shaped refractories and even in that of monolithic refractories. In this paper the oxidation of carbon the infiltration of slag into the brick texture and effects of additions were investigated. The results obtained were as follows : 1) The use of fused MgO-clinker and high purity carbon as raw materials increased the corosion registance and hot modulus of rupture of MgO-C brick. 2) As the oxidation reaction of the carbon proceeded the slag infiltrated into the brick texture. And then the slag components reacted with the MgO grains and formed low melting point compounds particulary CaO.MgO.$SiO_2$ and 3CaO.MgO.$2SiO_2$ that resulted in the wear of the brick. 3) It is recongnized the Al, Si, $B_3C$ effects on the oxidation registant properties of MgO-C brick by contribu-ting to the decrease of permeability according to the formation of $Al_4C_3$, SiC, $B_2O_3$ and the decrease of open pores relating to the formation of MgO.Al2O3, $SiO_2$, 3MgO.$B_2O_3$ at the decarbonized layer.

  • PDF

Performance Evaluation of High Strength Concrete with Composite Fibers in Accordance with High Temperature (복합섬유가 혼입된 고강도 콘크리트의 고온가열에 따른 성능 평가)

  • Kim, Seung-Ki;Kim, Woo-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.63-71
    • /
    • 2015
  • The objective of the present study is to investigate how elevated temperature ranging from $100^{\circ}C$ to $800^{\circ}C$ as well as room temperature affects the variation of mechanical properties of high strength concrete ($over\;f_{ck}=60MPa\;grade$). In this experiment, specimens were exposed for a period of $2^{\circ}C/min$ to temperatures of $20^{\circ}C$, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$ and $800^{\circ}C$, respectively. Accordingly, the study investigated the fire resistance performance of high strength concrete mixed with composite fibers which composed with hybrid fibers and steel fibers. After cooling down to ambient temperature, the following basic mechanical properties were then evaluated and compared with reference values obtained prior to thermal exposure: (i) compressive strength in room temperature; (ii) residual compressive strength; (iii) Poisson's ratio; (iv) weight change; (v) SEM analysis & XRD analysis In addition, XRD and SEM Images analyses were performed to investigate chemical and physical characteristics of high strength concrete with composite fibers according to high temperature.

A Study on Fire Performance of HPC Column with Fiber Cocktail in KS Fire Curve under Loading Condition (표준화재 재하조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 화재거동에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.377-380
    • /
    • 2008
  • The material and mechanical properties in the high temperature area of 40 to 100 MPa high strength concrete structural member was identified based on mixing of fiber cocktail and the structural element fire behavior simulation through the finite element analysis method (ABAQUS) was interpreted. The results are as follows. First, it was interpreted that the test specimen with concrete fiber cocktail mixed was more controllable in the maximum shrinkage than the one with concrete fiber cocktail not mixed the controllable range was about 25% to 55%. This means that shrinkage is controllable through mixing of fiber cocktail for the high strength concrete columns. Second, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance based design of fire resistant construction.

  • PDF

Hot Corrosion Properties of Heat Resistant Chrome Steels (내열강의 고온부식특성에 대한 크롬함량의 영향)

  • Lee, Han-sang;Jung, Jine-sung;Yoo, Keun-bong;Kim, Eui-hyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The hot corrosion properties of heat-resistant steels were investigated in an oxidation atmosphere including artificial ash and sulfur dioxide. The heat-resistant steels of T22, T92, T122, T347HFG, Super304H and HR3C were evaluated at 620, 670 and $720^{\circ}C$ for 400 hours. The relationship between the corrosion rate and the temperature followed a bell-shaped curve with a peak rate at around $670^{\circ}C$. The corrosion rates showed a decreasing tendency as the chrome contents of these steels increased from 2.15 wt.% to 24.5 wt.%, and austenitic steels had a lower corrosion rate than ferritic steels. Sulfidation by $SO_2$ as well as molten salt corrosion also had an effect on the total corrosion rate, especially showing an increase in the corrosion rate in ferritic steels. Regardless of the chrome content in the steels and irrespective of the test temperature, the corrosion scale was composed of an outer oxide and an artificial ash mixed layer, a middle oxide layer and inner sulfide, and a mixed oxide layer. As the chrome content increased, the proportion of chrome oxide in the corrosion scale increased. Before spalling of the corrosion scale, voids and cracks were initiated in the sulfide and the mixed oxide layer or at the interface with the substrate.

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

Experimental Evaluation of Fire Behavior of High-Strength CFT Column with Constant Axial Load (일정축력하에 고온을 받는 고강도 콘크리트 충전강관 기둥의 구조적 거동에 관한 연구)

  • Chung, Kyung Soo;Choi, In Rak;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • Fire-resistant (FR) test data for a square concrete-filled steel tube (CFT) columns consisting of high-strength steel (fy>650MPa) and high strength concrete (fck>100MPa) under axial loads are insufficient. The FR behavior of square high-strength CFT members was investigated experimentally for two specimens having ${\Box}-400{\times}400{\times}15{\times}3,000mm$ with two axial load cases (5,000kN and 2,500kN). The results show that the FR performance of the high-strength CFT was rapidly decreased at earlier time (much earlier at high axial load) than expected due to high strength concrete spalling and cracks. In addition, a fiber element analysis (FEA) model was proposed and used to simulate the fiber behaviour of the columns. For steel and concrete, the mechanical and thermal properties recommended in EN 1994-1-2 are adopted. Test results were compared to those of numerical analyses considering a combination of temperature and axial compression. The numerical model can reasonably predict the time-axial deformation relationship.