DOI QR코드

DOI QR Code

Experimental Evaluation of Fire Behavior of High-Strength CFT Column with Constant Axial Load

일정축력하에 고온을 받는 고강도 콘크리트 충전강관 기둥의 구조적 거동에 관한 연구

  • Received : 2012.05.18
  • Accepted : 2013.02.05
  • Published : 2013.02.27

Abstract

Fire-resistant (FR) test data for a square concrete-filled steel tube (CFT) columns consisting of high-strength steel (fy>650MPa) and high strength concrete (fck>100MPa) under axial loads are insufficient. The FR behavior of square high-strength CFT members was investigated experimentally for two specimens having ${\Box}-400{\times}400{\times}15{\times}3,000mm$ with two axial load cases (5,000kN and 2,500kN). The results show that the FR performance of the high-strength CFT was rapidly decreased at earlier time (much earlier at high axial load) than expected due to high strength concrete spalling and cracks. In addition, a fiber element analysis (FEA) model was proposed and used to simulate the fiber behaviour of the columns. For steel and concrete, the mechanical and thermal properties recommended in EN 1994-1-2 are adopted. Test results were compared to those of numerical analyses considering a combination of temperature and axial compression. The numerical model can reasonably predict the time-axial deformation relationship.

구조, 시공 및 내화측면에서 우수한 콘크리트충전강관(CFT)부재에 대해서 구성재료의 강도가 높은 경우 즉, 콘크리트 압축강도가 100MPa 이상이면서 강관의 항복강도가 650MPa 이상인 경우에 대한 내화성능 평가실험 및 해석적 연구는 미비한 실정이다. 본 연구에서는 이러한 부재에 대해서 내화성능 거동을 파악하고자 ${\Box}-400{\times}400{\times}15$, 부재길이 3,000mm인 실물대 중심재하 내화실험을 행하였다. 실험변수는 중심축력을 5,000kN과 2,500kN로 하였다. 실험결과, 고강도 콘크리트의 폭렬 및 콘크리트 내부 균열에 의하여 축하중이 클수록 조기에 내력을 상실하였다. 또한, 유한차분법과 변형률적합조건을 이용한 비정상온도해석 및 응력해석을 수행하였으며, 고강도 재료모델은 Eurocode모델을 이용하였다. 해석모델은 시간-축변위 관계를 합리적으로 예측할 수 있었다.

Keywords

References

  1. 김창수, 박홍근, 최인락, 정경수, 김진호 (2010) 800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능, 한국강구조학회 논문집, 한국강구조학회, 제22권, 제5호, pp.497-509. Kim, C.S., Park, H.G., Choi, I.R., Chung, K.S., and Kim, J.H. (2010) Structural performance of concrete-encased steel columns using 800MPa steel and 100MPa concrete, Journal of Korean Society of Steel Construction, KSSC, Vol. 22, No. 5, pp. 497-509 (in Korean).
  2. Varma, A.H., Ricles, J.M., Sause, R., and Lu, L.W. (2004) Seismic behavior and design of high-strength square concrete-filled steel tube beam columns, Journal of Structural Engineering, Vol. 130, No. 2, pp.169-179. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(169)
  3. Fujimoto, T., Mukai, A., Nishiyama, I., and Sakino, K. (2004) Behavior of eccentrically loaded concrete-filled steel tubular columns, Journal of Structural Engineering, Vol. 130, No. 2, pp.203-212. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
  4. Inai, E., Mukai, A., Kai, M., Tokinoya, H., Fukumoto, T., and Mori, K. (2004) Behavior of concrete-filled steel tube beam columns, Journal of Structural Engineering, Vol. 130, No. 2, pp.189-202. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(189)
  5. Lu, H., Zhao, X.L., and Han, L.H. (2009) Fire Behaviour of High Strength Self-consolidating Concrete Filled Steel Tubular Stub Columns, Journal of Constructional Steel Research, Vol. 65, pp.1995-2010. https://doi.org/10.1016/j.jcsr.2009.06.013
  6. Kodur, V.K.R. (2006) Solutions for enhancing the fire endurance of HSS columns filled with highstrength concrete, Engineering Journal, Vol. 43, pp.1-7.
  7. Kodur, V.K.R. (2007) Guidelines for fire resistant design of concrete-filled steel HSS columns-statethe- art and research needs, International Journal of Steel Structures, Vol. 7, pp.173-182.
  8. Schaumann, P., Kodur, V., and Bahr, O. (2009) Fire behaviour of hollow structural section steel columns filled with high strength concrete, Journal of Constructional Steel Research, Vol. 65, pp.1794-1802. https://doi.org/10.1016/j.jcsr.2009.04.013
  9. 한천구, 한민철, 허영선(2007) 고강도 콘크리트의 폭렬발생 메커니즘 규명, 대한건축학회논문집 구조계, 제23권, 제11호, pp.109-117. Han, C.G., Han, M,C., and Heo, Y.S. (2007) New proposal for spalling mechanism in high strength concrete, Journal of Architectural Institute of Korea, Vol. 23, No. 11, pp.109-117 (in Korean).
  10. 김형준, 김흥렬, 박경훈, 여인환, 권기혁(2011) Fiber-Cocktail 섬유를 혼입한 100MPa 고강도 콘크리트의 단면크기에 따른 폭렬 및 내화성능에 관한 실험적 연구, 한국화재소방학회 논문집, 한국화재소방학회, 제25권, 제5호, pp.85-92. Kim, H.J., Kim, H,Y., Park, K.H., Yeo, I.H., and Kwon, K.H. (2011) An experimental study on the fire resistance performance and spalling of 100MPa HSC column mixed fiber-cocktail, Journal of Korean Institute of Fire Science and Enginnering, Vol. 25, No. 5, pp.85-92 (in Korean).
  11. 김규용, 김영선, 이태규, 강선종, 김무한(2008) 고강도콘크리트를 충전한 CFT기둥의 내화성능 평가에 관한 실험적 연구, 대한건축학회논문집 구조계, 대한건축학회, 제24권, 제8호, pp.147-154. Kim, G.Y., Kim, Y,S., Lee, T.G., Kang, S.J., and Kim, M.H. (2008) An Experimental study on the evaluation of fire-resist performance of highstrength concrete filled steel tube column, Journal of Architectural Institute of Korea, Vol. 24, No. 8, pp.147-154 (in Korean).
  12. Chung, K., Park, S., and Choi, S. (2008) Material effect for predicting the fire resistance of concretefilled square steel tube column under constant axial load, Journal of Constructional Steel Research, No. 64, pp.1505-1515.
  13. Chung, K., Park, S., and Choi, S. (2009) Fire resistance of concrete filled square steel tube columns subjected to eccentric axial load, International Journal of Steel Structures, Vol. 9, pp.69-76. https://doi.org/10.1007/BF03249481
  14. Wang, Y.C. (2002) Steel and composite structures behavior and design for fire safety, Spon Press, pp.106-170.
  15. 권인규(2007) 고열환경에서의 구조용 강재 특성 데이터베이스 구축, 한국화재소방학회논문집, 한국화재소방학회, 제21권, 제3호, pp.47-55. Kwon, I.K. (2007) Derivation of the mechanical properties of structural steels at high temperatures, Journal of Korean Institute of Fire Science and Enginnering, Vol. 21, No. 3, pp.47-55 (in Korean).
  16. 권인규(2007) 콘크리트 충전강관 내화설계를 위한 구조용 강재 고온물성 데이터 베이스 구축, 2007년도 학술발표대회 논문집, 대한건축학회, 제27권, 제1호, pp.483-486. Kwon, I.K. (2007) Data-bases of high temperature steel properties for fire engineering design of concrete filled steel tube, Journal of annual conference of the AIK, Vol. 27, No. 1, pp.483-486 (in Korean).
  17. Lennon, T., Moore, D.B., Wang, Y.C., and Bailey C.G. (2007) Designers' guide to EN1991-1-2, EN1992-1-2, EN1993-1-2 and EN1994-1-2, Thomas Telford Press.
  18. 김흥열, 서치호, 신현준(2005) 고온영역에서 강도영역별 콘크리트의 역학적 특성에 관한 실험적 연구, 대한건축학회논문집 구조계, 대한건축학회, 제21권, 제7호, pp.55-66. Kim, H.Y., Seo, C,H., and Shin, H.J. (2005) An experimental study on the mechanical properties by compressive strength areas at high temperature, Journal of Architectural Institute of Korea, Vol. 21, No. 7, pp.55-66 (in Korean).
  19. 김흥열, 서치호(2004) 고온 가열시 콘크리트의 강도 영역별 물리적 특성에 관한 실험적 연구, 대한건축학회논문집 구조계, 대한건축학회, 제20권, 제11호, pp.75-82. Kim, H.Y. and Seo, C.H. (2004) An experimental study on the physical properties by compressive strength areas of concrete at high temperature, Journal of Architectural Institute of Korea, Vol. 20, No. 11, pp.75-82 (in Korean).
  20. 김흥열, 전현규(2006) 고온시 40-100MPa 범위의 콘크리트 열적특성에 관한 실험적 연구, 2006년도 학술발표대회, 한국콘크리트학회, pp.425-428. Kim, H.Y. and Cheon, H.G. (2006) An experimental study on the thermal properties of high strength concrete in the range of 40-100MPa at high temperature, Journal of annual conference of the KCI, pp.425-428 (in Korean).

Cited by

  1. Evaluation of Fire Resistance of Unprotected Concrete-filled Rectangular Steel Tubular Columns under Axial Loading vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.323
  2. Prediction of Temperature Distribution to Evaluate Axial Strength of Unprotected Concrete-filled Steel Tubular Columns under Fire vol.25, pp.6, 2013, https://doi.org/10.7781/kjoss.2013.25.6.587