• Title/Summary/Keyword: spacecraft control

Search Result 358, Processing Time 0.026 seconds

Design of Deterministic Task Scheduling Software for MSC

  • Heo, Haeng-Pal;Yong, Sang-Soon;Kong, Jong-Pil;Kim, Young-Sun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.241-241
    • /
    • 2002
  • MSC(Multi-Spectral Camera) is a main payload of KOMPSAT(Korea Multi-Purpose Satellite)-II which will be launched in 2004. MSC will perform his mission with the GSD(Ground Sample Distance) of 1m, swath width of 15km and spectral range of 450nm~900nm at the altitude of 685km. MSC consists of three main subsystems. One is EOS(Electro-Optics Subsystem), another is PMU(Payload Management Unit) and the other is PDTS(Payload Data Transmission Subsystem). There is an SBC(Single Board Computer) in the PW to control all the other units and SBC software performs the interface with spacecraft and control all MSC sub-units. SBC software consists of a lot of tasks and manages them with the time criticalness. All tasks are designed to be scheduled and executed at the predetermined time in order to make sure that the mission of MSC system is achieved successfully. In this paper, the real-time task scheduling of the SBC software will be described and analyzed.

  • PDF

Power System Design for Next Generation LEO Satellite Application (차세대 저궤도 소형위성 적용을 위한 전력시스템 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jan, Sung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

Satellite FEM Validation test for High Frequency Jitter Analysis

  • Oh, Shi-Hwan;Yong, Ki-Lyuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.28.4-29
    • /
    • 2008
  • The aim of the test is to provide an experimental basis to validate the prediction of the FEM for high frequency jitter analysis due to reaction wheel. The principle is to measure structural transfer functions between the input disturbances at RWA base plate and the accelerations near the end tips of payload, in a configuration close to the operational model. The spacecraft shall have to be suspended, in order to be representative of on-orbit boundary conditions. The results of the test shall be compared to the output of the FEM analysis, and if needed, local upgrades of the FEM and/or margin policy shall be defined in order to guarantee a good test/FEM consistency. Test results were compared with the transfer functions of the FEM, which is globally tuned based on the results of vibration test and consequently have lower damping coefficients values than 1% in the frequency range of 60~200Hz. The damping coefficients estimated from the figures of FRF test results are different from the theoretical FEM, but the magnitude trend of FRF of the test results is somewhat similar with the analytical, it is expected that the overall jitter effect of final estimation is nearly same with the preliminary analysis result in which the damping coefficients were assumed to be 1% for all modes in FEM.

  • PDF

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

A Study on the CDMA-based TT&C Design and Experiment Concept

  • Lee, Ho-Jin;Mo, Hee-Sook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.37-40
    • /
    • 1999
  • ETRI has successfully completed and delivered to KARI the KOMPSAT Mission Control System. This system was designed to work in the conventional TT&C modulation scheme with the pre-assigned frequencies. As a way to accelerate in catching up with future TT&C technology evolutions, a preliminary study needs to be carried out to prepare for the development of a spread spectrum applicable to TT&C. A brief study was carried out to review some points to be considered in designing and implementing spread spectrum schemes to the ground TT&C system intended for a LEO spacecraft. Also a simulation and link design revisit was performed to see the operational and technical benefits with the KOMPSAT TT&C parameters. An experiment concept is proposed to test as many functions at a time once the prototype is developed. In this configuration, a ground-model TT&C transponder is connected via LAN to the ETRI-developed KOMPSAT S/W simulator and linked to the KOMPSAT TM/TC processing s/w via spread spectrum signals through a GEO satellite bent-pipe link. A satellite data relay link simulation could be carried out in this configuration.

  • PDF

Adaptive Control of Spacecraft with Elastic Appendages (유연한 부속물을 가진 우주선의 적응제어)

  • Lee, Ho-Jin;Lee, Keum-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.159-163
    • /
    • 2008
  • In this paper, a simplified type of adaptive controller using Nussbaum gain for the control of the spacecrapt with elastic appendages is suggested. This method doesn't need the information of the high frequency components in transfer function. While the pitch angle tracks the desired value by this method, the elastic modes are also stabilized. Only pitch angle and the pitch rate are used for the design of the output feedback controller. Especially all system parameters and the high frequency gain are assumed to be unknown. For design simplicity, a controller is designed by using only the linear part, and it's shown to satisfy the nonlinear system by the simulation with basic explanations. By using the Lyapunov function, the stability of the suggested algorithm is demonstrated, and also the effectiveness of the suggested algorithm is verified by showing the computer simulation results.

  • PDF

다목적실용위성 2호 추진시스템 비행모델 개발

  • Lee, Kyun-Ho;Han, Cho-Young;Yu, Myoung-Jong;Choi, Joon-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • Propulsion System provides the required velocity change impulse for orbit transfer from parking orbit to mission orbit and three-axis vehicle attitude control impulse. KOMPSAT-2 propulsion system(PS) is an all-welded, monopropellant hydrazine system. The PS consists of the subassemblies and components such as Thrusters, Propellant Tank, Pressure Transducer, Propellant Filter, Latching Isolation Valves, Fill/Drain Valves, interconnecting propellant line assembly, and thermal hardwares for operation-environment control of the PS. This paper summarizes a development process of the liquid propulsion system from the design engineering up to the test and evaluation.

  • PDF

Design, development and ground testing of hingeless elevons for MAV using piezoelectric composite actuators

  • Dwarakanathan, D.;Ramkumar, R.;Raja, S.;Rao, P. Siva Subba
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.303-328
    • /
    • 2015
  • A design methodology is presented to develop the hingeless control surfaces for MAV using adhesively bonded Macro Fiber Composite (MFC) actuators. These actuators have got the capability to deflect the trailing edge surfaces of the wing to attain the required maneuverability, besides achieving the set aerodynamic trim condition. A scheme involving design, analysis, fabrication and testing procedure has been adopted to realize the trailing edge morphing mechanism. The stiffness distribution of the composite MAV wing is tailored such that the induced deflection by piezoelectric actuation is approximately optimized. Through ground testing, the proposed concept has been demonstrated on a typical MAV structure. Electromechanical analysis is performed to evaluate the actuator performance and subsequently aeroelastic and 2D CFD analyses are carried out to see the functional requirements of wing trailing edge surfaces to behave as elevons. Efforts have been made to obtain the performance comparison of conventional control surfaces (elevons) with morphing wing trailing edge surfaces. A significant improvement in lift to drag ratio is noticed with morphed wing configuration in comparison to conventional wing. Further, it has been shown that the morphed wing trailing edge surfaces can be deployed as elevons for aerodynamic trim applications.

Three Dimensional Positioning Accuracy of KOMPSAT-1 Stereo Imagery

  • Jeong, Soo;Kim, Yong-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • KOMPSAT-1 was launched on 21 December, 1999 and the main mission of the satellite is the cartography to provide the imagery from a remote earth view for the production of maps of Korean territory. For this purpose, the satellite has capability to tilt the spacecraft utmost $\pm$45 degrees to acquire stereo satellite imagery in different paths. This study aims to estimate the three dimensional positioning accuracy of stereo satellite imagery from EOC(electro-optical camera), a payload of KOMPSAT-1 satellite. For this purpose, the ground control points and check points were obtained by GPS surveying. The sensor modeling and the adjustment was performed by PCI software installed in KARI (Korea Aerospace Research Institute), which contained mathematical analysis module for KOMPSAT-1 EOC. The study areas were Taejon and Nonsan, placed in the middle part of Korea. As a result of this study, we found that the RMSE(root mean square error) value of three dimensional positioning KOMPST-1 stereo imagery can be less than 1 pixel (6.6 m) if we can use about 10 GCPs(ground control points). Then, a standarrd of FGDC (Federal Geographic Data Committee) of USA was applied to the result to estimate the three dimensional positioning accuracy of KOMPSAT-1 stereo imagery.

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.