• Title/Summary/Keyword: space optics

Search Result 360, Processing Time 0.027 seconds

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Measurement of Large Mirror Surface using a Laser Tracker (레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정)

  • Jo, Eun-Ha;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.331-337
    • /
    • 2013
  • A large optical surface is fabricated by grinding, polishing and figuring. The grinding process is the most rapid and has the largest amount of fabrication of all processes. If we measure the surface precisely and rapidly in the grinding process, it is possible to improve the efficiency of the fabrication process. Since the surface of grinding process is rough and not shiny, it is not easy to measure the surface using light so that we cannot use an interferometer. Therefore, we have to measure the surface using a mechanical method. We can measure the surface under the grinding process by using a laser tracker which is a portable 3-dimensional coordinate measuring machine. In this paper, we used the laser tracker to measure the surface error of 1 m diameter spherical mirror. This measurement result was compared to that of an interferometer. As a result, surface measurement error was found to be $0.2{\mu}m$ rms (root mean square) and $2.7{\mu}m$ PV (Peak to Valley), which is accurate enough to apply to the rough surface under the grinding stage.

The design of a single layer antireflection coating on the facet of buried channel waveguide devices using the angular spectrum method and field profiles obtained by the variational method (Variational 방법으로 구한 필드 분포와 Angular Spectrum 방법을 사용한 Buried채널 도파로 소자 단면의 단층 무반사 코팅 설계)

  • 김상택;김형주;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • We have calculated the optimum refractive index and normalized thickness of a single layer antireflection coating on the facet of buried channel waveguides as a function of waveguide width for several waveguide depths using the angular spectrum method and field profiles obtained by the effective index method (EIM) and the variational method (VM), respectively, and discussed the results. In the area of large waveguide width, the optimum parameters of a single layer antireflection coating obtained by both methods are almost the same. However, as waveguide width decreases, the parameters obtained by the VM approach those of a single layer antireflection coating between cladding layer and air, while those obtained by the EIM do not approach those, and the difference between the two parameters is large. The tolerance maps of the quasi-TE and quasi-TM modes obtained by the VM for square waveguides are located in almost the same area regardless of refractive index contrast, while those obtained by the free space radiation mode (FSRM) method for refractive index contrast of 10% are located in the different area. Thus, we think that the tolerance maps obtained by the VM are more exact than those obtained by the FSRM method.

GRINDING OPTIMIZATION MODEL FOR NANOMETRIC SURFACE ROUGHNESS FOR ASPHERIC ASTRONOMICAL OPTICAL SURFACES (천체망원경용 비구면 반사경 표면조도 향상을 위한 최적연삭변수 수치결정모델)

  • Han, Jeong-Yeol;Kim, Sug-Whan;Kim, Geon-Hee;Han, In-Woo;Yang, Sun-Choel
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Bound abrasive grinding is used for the initial fabrication phase of the precision aspheric mirrors for both space and ground based astronomical telescopes. We developed a new grinding optimization process that determines the input grinding variables for the target surface roughness, checks the grinding error magnitude in resulting surface roughnesses, and minimizes the required machining time. Using the machining data collected from the previous grinding runs and subsequently fed into the multivariable regression engine, the process has the evolving controllability that suggests the optimum set of grinding variables for each target surface roughness. The process model was then used for ten grinding experiments that resulted in the grinding accuracy of $=-0.906{\pm}3.38(\sigma)\;nm(Ra)$ for the target surface roughnesses of Zerodur substrate ranging from 96.1 nm (Ra) to 65.0 nm (Ra) The results imply that the quantitative process optimization technique developed in this study minimizes the machining time and offers the nanometric surface roughness controllability superior to the traditional, qualitative, craftsman based grinding process for the astronomical optical surfaces.

Research on the optimization of off-axis illumination condition and sub-resolution pattern size for the $0.1{\mu}m$ rule dense pattern formation ($0.1{\mu}m$급 dense 패턴 형성을 위한 사입사 조명 조건과 OPC 보조 패턴 크기의 최적 조건에 관한 연구)

  • 박정보;이재봉;이성묵
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.190-199
    • /
    • 2001
  • In this paper, we have researched the depth of focus (DOF) and cutoff intensity of the $0.1{\mu}m$rule dense line'||'&'||'space pattern according to the various off-axis illumination (OAl) conditions in the optical system of 0.65 NA using ArF excimer laser (193 nm). We have also studied the variation of the DOF and cutoff intensity according to the sub-resolution pattern (hammer head type) size for optical proximity correction (OPC) applied to the capacitor pattern and the various OAl conditions in the same optical system. As a result, it is revealed that the cross type quadrupole or annular illumination is preferred to the conventional X type quadrupole for printing the $0.1{\mu}m$ rule dense pattern. Also, we can investigate the optimal illumination condition and the size of ope sub-resolution pattern to keep a consistent DGF and cutoff intensity trends.

  • PDF

Conceptual design and RCS property research of three-surface strike fighter

  • Yue, Kuizhi;Tian, Yifeng;Liu, Hu;Han, Wei
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2014
  • This paper mainly focuses on the conceptual design and stealth performance of the three-surface military aircraft. A three-dimensional (3-D) digital mock-up of the three-surface strike fighter with stealth feature was designed and the schemes of carrying missiles were analyzed in CATIA. Based on physical optics principle and the Method of Equivalent Currents (MEC), a numerical simulation of the RCS feature of the aircraft was carried out with RCSPlus which is a software designed by Beihang University. The paper contributes to the RCS feature analysis of the whole plane and different parts on X-band, S-band and UHF-band and a comparison of RCS feature to Su-37 and T-50 military aircraft is drawn. On X-band, the pitch angle of the incident wave was $0^{\circ}$, and the result shows: (1) Compared with Su-37 aircraft, the forward scattering RCS of the three-surface strike aircraft was reduced to 14.9%, the side scattering RCS to 9.6% and the back scattering RCS to 40.2%. (2) Compared with T-50 aircraft, the forward scattering RCS was reduced to 38.61%, and the side scattering RCS to 67.26%. This paper should be useful for researchers in conceptual design and stealth technology of the military aircraft.

Focused Electrospray Deposition for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

  • Jeong, Kyung-Hwan;Seo, Jong-Cheol;Yoon, Hye-Joo;Shin, Seung-Koo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2293-2298
    • /
    • 2010
  • Focused electrospray (FES) deposition method is presented for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. FES ion optics consists of two cylindrical focusing electrodes capped with a truncated conical electrode through which an electrospray emitter passes along the cylindrical axis. A spray of charged droplets is focused onto a sample well on a MALDI target plate under atmospheric pressure. The shape and size distributions of matrix crystals are visualized by scanning electron microscope and the mass spectra are obtained by time-of-flight mass spectrometry. Angiotensin II, bradykinin, and substance P are used as test samples, while $\alpha$-cyano-4-hydroxycinnamic acid and dihydroxybenzoic acid are employed as matrices. FES of a sample/matrix mixture produces fine crystal grains on a 1-3 mm spot and reproducibly yields the mass spectra with little shot-to-shot and spot-to-spot variations. Although FES greatly stabilizes the signals, the space charge due to matrix ions limits the detection sensitivity of peptides. To avoid the space charge problem, we adopted a dual FES/FES mode, which separately deposits matrix and sample by FES in sequence. The dual FES/FES mode reaches the detection sensitivity of 0.88 amol, enabling ultrasensitive of peptides by homogeneously depositing matrix and sample under atmospheric pressure.

Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching (임피던스정합을 이용한 레이더반사면적 최소화 단층형 전파흡수구조 설계)

  • Jang, Byung-Wook;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.118-124
    • /
    • 2015
  • The design of radar absorbing structures(RAS) is a discrete optimization problem and is usually processed by stochastic optimization methods. The calculation of radar cross section(RCS) should be decreased to improve the efficiency of designing RAS. In this paper, an efficient method using impedance matching is studied to design RAS for minimizing RCS. Input impedance of the minimal RCS for the specified wave incident conditions is obtained by interlocking physical optics(PO) and optimizations. Complex permittivity and thickness of RAS are designed to satisfy the calculated input impedance by a discrete optimization. The results reveal that the studied method attains the same results as stochastic optimization which have to conduct numerous RCS analysis. The efficiency of designing RAS can be enhanced by reducing the calculation of RCS.

Simulation of Dynamic EADs Jamming Performance against Tracking Radar in Presence of Airborne Platform

  • Rim, Jae-Won;Jung, Ki-Hwan;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo;Choi, Seung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.475-483
    • /
    • 2015
  • We propose a numerical scheme to simulate the time-domain echo signals at tracking radar for a realistic scenario where an EAD (expendable active decoy) and an airborne target are both in dynamic states. On various scenarios where the target takes different maneuvers, the trajectories of the EAD ejected from the target are accurately calculated by solving 6-DOF (Degree-of-Freedom) equations of the motion for the EAD. At each sampling time of the echo signal, the locations of the EAD and the target are assumed to be fixed. Thus, the echo power from the EAD can be simply calculated by using the Friis transmission formula. The returned power from the target can be computed based on the pre-calculated scattering matrix of the target. In this paper, an IPO (iterative physical optics) method is used to construct the scattering matrix database of the target. The sinc function-interpolation formulation (sampling theorem) is applied to compute the scattering at any incidence angle from the database. A simulator is developed based on the proposed scheme to estimate the echo signals, which can consider the movement of the airborne target and EAD, also the scattering of the target and the RF specifications of the EAD. For applications, we consider the detection probability of the target in the presence of the EAD based on Monte Carlo simulation.

Pulsed Terahertz Emission and Detection Properties from ZnTe Crystal (ZnTe 결정을 이용한 테라헤르츠파의 발생 및 검출 특성)

  • Jin, Yun-Sik;Jeon, Seuk-Gy;Kim, Keun-Ju;Sohn, Chae-Hwa;Jung, Sun-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.553-559
    • /
    • 2005
  • Pulsed terahertz (THz) radiation was generated by optical rectification and detected by a fee space electro-optic sampling (FS-EOS) method. We used ZnTe (110) crystals for both generation and detection. By coating dielectric anti-reflection film on the ZnTe crystal surface, we can reduce the reflectance of a pump laser beam from $30\%$ to $2\%$, and the terahertz pulse amplitude increased $27\%$ compared with an uncoated crystal. A wider bandwidth of THz radiation was obtained by using a thinner crystal but the signal intensity was decreased in this case. And variations of THz radiation by changing orientation of the ZnTe crystal with respect to the pump (or probe) laser polarization, and by changing the power of the pump laser have also been investigated and discussed.