Research on the optimization of off-axis illumination condition and sub-resolution pattern size for the $0.1{\mu}m$ rule dense pattern formation

$0.1{\mu}m$급 dense 패턴 형성을 위한 사입사 조명 조건과 OPC 보조 패턴 크기의 최적 조건에 관한 연구

  • 박정보 (서울대학교 물리교육과) ;
  • 이재봉 (서울대학교 물리교육과) ;
  • 이성묵 (서울대학교 물리교육과)
  • Published : 2001.06.01


In this paper, we have researched the depth of focus (DOF) and cutoff intensity of the $0.1{\mu}m$rule dense line'||'&'||'space pattern according to the various off-axis illumination (OAl) conditions in the optical system of 0.65 NA using ArF excimer laser (193 nm). We have also studied the variation of the DOF and cutoff intensity according to the sub-resolution pattern (hammer head type) size for optical proximity correction (OPC) applied to the capacitor pattern and the various OAl conditions in the same optical system. As a result, it is revealed that the cross type quadrupole or annular illumination is preferred to the conventional X type quadrupole for printing the $0.1{\mu}m$ rule dense pattern. Also, we can investigate the optimal illumination condition and the size of ope sub-resolution pattern to keep a consistent DGF and cutoff intensity trends.



  1. Jpn. J. Appl. Phys. v.30 no.11B Photolithography system using annular illumination K. Kamon;T. Miyamoto;Y. Myoi;H. Nagata;M. Tanaka;K. Horie
  2. 한국광학회지 v.10 no.6 패턴 분해능 및 초점심도 향상에 대한 시입사 조명(Off-Axis Illumination)의 효과에 관한 연구 박정보;이성묵
  3. IEEE Trans. Electron Devices v.ED-29 Improving resolution in photolithography with a phase-Shifting Mask M. D. Levenson;N. S. Viswanathan;R. A. Simpson
  4. Optical Microlithography X;Proc. SPIE v.3051 Practical method for full-chip optical proximity J. F. Chen;T. Laidig;K. E. Wampler;R. Caldwell;G. E. Fuller (ed.)
  5. Optical/Laser Microlithography Ⅶ;Proc. SPIE v.2197 Automated optical proximity correction: a rules-based approach O. Otto;J. Garafalo;K. Low;C. Yuan;R. Henderson;C. Pierrat;R. Kostelak;S. Vaidya;P. Vasudev;T. A. Brunner(ed.)
  6. Optical Microlithography X;Proc. SPIE v.3051 Spatial filter models to describe IC lithographic behavior J. Stirniman;M. Rieger;G. E. Fuller(ed.)
  7. J. Vac. Sci. Technol. B v.17 no.3 Spatial frequency analysis of optical lithography resolution enhancement techniques S. R. J. Brueck;X. Chen
  8. Jpn. J. Appl. Phys. v.33 The Exposure-Defocus Forest B. J. Lin
  9. Optical Microlithography X;Proc. SPIE v.3051 Practical method for full-chip optical proximity J. F. Chen;T. Laidig;K. E. Wampler;R. Caldwell;G. E. Fuller(ed.)
  10. J. Vac. Sci. Technol. B v.15 no.6 Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars J. F. Chen;T. Laiding;K. E. Wampler;R. Caldwell
  11. Optical Microlithography ⅩⅠ;Proc. SPIE v.3334 Process proximity correction using an automated software tool W. Maurer;C. Dolainsky;J. Thiele;C. Friedrich;P. Karakapsanis;L. van den Hove(ed.)
  12. Optical Microlithography ⅩⅠ; Proc. SPIE v.3334 Illumination pupil filtering using modified quadrupole apertures B. W. Smith;L. Zavyalova;J. S. Petersen;L. van den Hove(ed.)
  13. J. Vac. Sci. Technol. B v.17 no.3 Experimental comparison of off-axis illumination and imaging interferometric lithography X. Chen;S. R. J. Brueck
  14. Jpn, J. Appl. Phys. v.38 no.12B Imaging characteristics of 0.12㎛ dynamic random access memory pattern by KrF excimer laser lithography S. Nakao;K. Tsujita;I. Arimoto;W. Wakamiya
  15. Optical Microlithography ⅩⅠ;Proc. SPIE v.3334 Lithographic effect of mask critical dimension error A. K. Wong;R. A. Ferguson;L. W. Liebmann;S. M. Manfield;A. F. Molless;M. O. Neisser;L. van den Hove(ed.)
  16. Optical Microlithography ⅩⅡ;Proc. SPIE v.3679 The mask error factor: causes and implications for process latitude J. V. Schoot;J. Finders;K. V.I. Schenau;M. Klaassen;C. Buijk;L. van den Hove(ed.)