• Title/Summary/Keyword: space launch vehicle

Search Result 475, Processing Time 0.025 seconds

Application of Cost Estimation to Space Launch Vehicle Development Program (우주발사체 개발사업의 비용 추정 현황 및 사례)

  • Yoo, Il-Sang;Seo, Yun-Kyoung;Lee, Joon-Ho;Oh, Bum-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • A space launch vehicle system represents a typical example of large-scale multi-disciplinary systems, consisting of subsystems such as mechanical structure, electronics, control, telecommunication, propulsion, material engineering etc. A lot of cost is required to develop the launch vehicle system. A precise planning of R&D cost is very essential to make a success of the launch vehicle development program. Especially in the early development phase of a new space launch vehicle system, cost estimation techniques and analogy from past similar development data are very useful methods to estimate a development cost of the launch vehicle system. Now Korea Aerospace Research Institute is in charge of the KSLV-I (Korea Space Launch Vehicle-I) Program that is a part of Korea National Space program. KSLV-I Program is a national undertaking to develop launch capabilities to deliver science satellites of a 100kg-class into a low earth orbit. It is hereafter, going to plan to develop a new korean space launch vehicle. In this paper, first the development costs of well-known launch vehicles in the world are presented to provide a reference to make a development plan of a new launch vehicle. Second this paper introduces the present status of cost estimation applications at NASA. Finally this paper presents the results from application of a TRANSCOST, a parametric cost model, to derive a cost estimate of a new launch vehicle development, as an example.

The Transition Effect of Korea's Space Development

  • Kim, Jong-bum
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.80-85
    • /
    • 2018
  • In the 1990s, South Korea recently launched Space Development and is pushing for a step toward Space. In the Space Launch Vehicle field, the development of Practical satellite type Launch Vehicle (Korea Space Launch Vehicle II) has progressed to the stage of proprietary development, and in the field of Satellite development, they also have a great deal of competitiveness. This study will be a shortcut to rediscovering our potential and looking for breakthroughs by reviewing and re-examining the effects of past Space development.

The Development of Air-based Space Launch Vehicle for small satellites (초소형위성 발사를 위한 공중기반 우주발사체 발전방안)

  • Cho, Taehwan;Lee, Soungsub
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • The end of the ROK-U.S. missile guidelines opened up the possibility of developing space launch vehicles for various platforms based on air and sea. In particular, the air-based space launch vehicle is an essential space power projection capability compared to the ground-based space launch vehicle in consideration of the geographical location of the Korean Peninsula, such as the deployment of various satellite orbits and the timely launch of satellite. In addition, compared to the ground-based launch vehicle, the cost reduction effect is large, and it has the merit of energy gain because it can be launched with the advantage of the aircraft's altitude and speed. Therefore, in this paper, the necessity of air-based space launch vehicle in the strategic environment of the Korean Peninsula is clearly presented, and through technology trend analysis of various air launch vehicle, the three methods are proposed to have the most efficient air-based space launch vehicle capability in the Korean situation.

Development Trend of the Reusable Space Launch Vehicle (재사용 우주 발사체 개발 동향)

  • Jeong, Seokgyu;Bae, Jinhyun;Jeong, Gijeong;Koo, Jaye;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1069-1075
    • /
    • 2017
  • With the recent development of space technology, the satellite market, especially the small satellite market, is growing globally. As the satellite market continues to grow, the launch vehicle market is also growing, and demand for low-cost launches is increasing. There are a number of options for low-cost launches, including development of engine that uses low-cost propellants, product and transportation cost savings, but the most effective way to reduce launch costs is to reuse the used launch vehicles. USA's Space Shuttle, a famous rocket as manned spacecraft, could be referred as the start of reusable launch vehicle. However, Space Shuttle had limited reusable parts and it was very expensive even though it is a reusable launch vehicle because of its low efficiency. In recent years, aiming at a real reusable launch vehicle, reusable launch vehicle for commercial purposes have been developed around USA's SpaceX and Blue Origin, and re-landing tests were successfully accomplished. In addition, SpaceX successfully did the re-using of first-stage launch vehicle that had been succeeded in re-landing already. In accordance with this trend, countries such as Europe and India are also concentrating on the study of reusable launch vehicles. Including Blue Origin, companies like Virgin Galactic and XCOR in the United States, are also trying to commercialize the same reusable technology as the private manned space tourism. Confirmation of these technology trends is essential, because the re-use technology could change the landscape of the global launch vehicle market.

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF

KSLV-II Cost Estimate using TRANS COST 7.1 (TRANSCOST 7.1을 적용한 실용위성 발사체 비용추정)

  • Seo, Yun-Kyoung;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • Space launch vehicle development needs many kinds of technologies synthetically. Nowadays, KARI (Korea Aerospace Research Institute) has developed a space launch vehicle, KSLV-I (Korea Space Launch Vehicle-I), that is able to load with an 100kg payload. After that it plans to develop Korean Space Launch Vehicle. As space launch vehicle becomes more complicate and larger, it needs a scientific and analytic development cost estimation. In this paper a cost estimation for KSLV-II using TRANSCOST 7.1 was studied.

  • PDF

RELIABILITY DEMONSTRATION OF PROPULSION SYSTEM OF SPACE LAUNCH VEHICLE

  • Cho Sang-Yeon;Kim Yong-Wook;Oh Seung Hyub;Park Chan-Bin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.341-343
    • /
    • 2004
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

Design of Deep Space Missions Using a Dedicated Small Launch Vehicle (소형위성 전용 발사체를 이용한 심우주 임무 설계)

  • Choi, Su-Jin;Loucks, Mike;West, Stephen;Seo, Daeban;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.877-888
    • /
    • 2022
  • Recently, as the CAPSTONE, a precursor mission for Lunar Gateway, was launched on a small launch vehicle for the purpose of demonstrating communications and navigation technology in the NRHO, large attention was brought to this event that enabled high-impact deep space mission using dedicated small launch vehicle and small spacecraft. In this study, we introduced the concept of a dual launch operation and examined the capability of the new concept in the exploration of the Moon, Mars and asteroid. It turned out a single launch is sufficient for the lunar low orbit mission up to around 247 kg, and the dual launch option can transport 215 kg and 183 kg to nearby destinations as such as Mars and astroid Apophis respectively.

Design and Test of Thermal Control and Fire Safety System for Space Launch Vehicle (발사체 열제어/화재안전 시스템 설계 및 시험)

  • Ko, Ju Yong;Oh, Taek Hyun;Lee, Joon-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1006-1010
    • /
    • 2017
  • This paper describes the design and test of the thermal control and fire safety system for thermal control and the fire/explosion prevention of inside the compartment during the preparation and operation of the space launch vehicle at the launch pad. The system considered here is for the test launch vehicle which is being developed as part of the development of the Korean Space launch vehicle-II. This system applies the high pressure system based on the heritage of Naro launch vehicle. The selection of thermal control and fire safety system from high pressure and low pressure system is done in consideration of the characteristics of the launch pad gas supply system and the characteristics of launch vehicle, and the system configuration is also changed accordingly. As a result, it has been confirmed that the developed system satisfies the initial design conditions through the test. Moreover the system will be applied to the development of the Korean launch vehicle in the future.

  • PDF

Trend of Domestic and International Development of Space Launch Vehicles (우주발사체 개발의 국내외 동향)

  • Gong, Hyeon-Cheol;Lee, Joon-Ho;Oh, Bum-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • There would be a long-waited launch of a Korean space launch vehicle(KSLV-I) in NARO Space Center which is located in Goheung, Jeol La Nam Do in Korea. Korea would be the nineth country in the world which could launch space launch vehicle itself. The launch of the 2nd technology satellite of 100kg with KSLV-I would give Korean hope and dream. In addition to the traditional space activities of U.S.A. and Russia, Japan launched the lunar satellite, Kaguya in 2007, China launched the lunar satellite, Change and succeeded in space walk and India launched the lunar satellite Chandrayaan in October, 2008. In this paper we study on the trend of domestic and international development of space launch vehicle considering all these space development activities.

  • PDF