• Title/Summary/Keyword: space drilling

Search Result 110, Processing Time 0.022 seconds

Correlation Between Drilling Parameter and Tunnel Support Pattern Using Jumbo Drill (도로터널에서 지보패턴별 굴착지수 상관관계 고찰)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.17-24
    • /
    • 2001
  • Four road tunnels of which the construction conditions were similar were selected in the paper, and laboratory tests and rockmass classification for the tunnels were carried out. And the analysis was performed to find out the correlation between ratio of bit abrasion or drilling parameter and support pattern of tunnel using jumbo drill machine. It was analyzed that there was average abrasion of bit from 11.85% to 3.25% per support patterns of tunnel in four tunnels. Drilling parameter happens to fluctuate according to extent of fracture zone.

  • PDF

Procedure of Drilling Operations for Site Characterization of High-Level Radioactive Waste Disposal Facility (고준위방사성폐기물 처분시설 부지 특성화를 위한 시추 절차서)

  • Dae-Sung Cheon;Jai-Yong Park
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.477-502
    • /
    • 2024
  • To effectively dispose of high-level radioactive waste, it is crucial to understand the geological characteristics of the deep rock at the disposal site where the disposal facility will be located. Deep drilling is essential in this process and can obtain multidisciplinary deep rock characteristics by conducting tests using recovered cores and various tests using boreholes. However, in Korea, there are currently no established guidelines or procedures for deep drilling aimed at sit investigation and characterization for high-level radioactive waste disposal. This report proposes a deep drilling procedure based on five years from 2020 of multipurpose deep drilling experience conducted for various rock types by the Korea Institute of Geoscience and Mineral Resources. The proposed procedure includes various processes such as health, safety, and environments, pre-drilling work, drilling work, circulating drilling water management, site characterization evaluation parameter acquisition tests and measurements, and sampling. These procedures will need to be continuously revised and amended in the future to meet the needs of drilling and HLW disposal industries and related fields, as well as to strengthen quality assurance under the Nuclear Safety Act.

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

Effect of RMR and rock type on tunnel drilling speed (RMR과 암석종류가 터널 천공속도에 미치는 영향)

  • Kim, Hae-Mahn;Lee, In-Mo;Hong, Chang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.561-571
    • /
    • 2019
  • Drilling and charging of the blast holes during NATM tunneling works take more than 30% of construction time among the whole tunneling work process. Prediction of ground condition ahead of tunnel face has been studied by several researchers by correlating percussion pressure and drilling speed during tunneling work with the ground condition and/or RMR values. However, most of the previous researches were conducted in the granite rock condition which is the most representative igneous rock in the Korean peninsula. In this study, drilling speeds in igneous rocks were analyzed and compared with those in sedimentary rocks (most dominantly composed of conglomerates, sandstones, and shales) under the similar RMR ranges; it was identified that the drilling speed is pretty much affected by rock types even in a similar RMR range. Under the similar RMR values, the drilling speed was faster in sedimentary rocks compared with that in igneous rock. Moreover, while the drilling speed was not much affected by change of the RMR values in igneous rocks, it became faster in sedimentary rocks as the RMR values got lower.

Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment (선진시추장비와 시추공벽 영상화 장비를 이용한 TBM 전방 지반평가시스템 개발)

  • Kim, Ki-Seog;Kim, Jong-Hoon;Jeong, Lae-Chul;Lee, In-Mo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.393-401
    • /
    • 2015
  • In the construction of a TBM tunnel, it is very important to acquire accurate information of the excavated rock mass for an efficient and safe work. In this study, we developed the prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment to predict rock mass conditions of the tunnel face ahead. The prediction system consists of the probe drilling equipment, drilled hole imaging equipment and analysis software. The probe drilling equipment has been developed to be applicable to both non-coring and coring. Also the probe drilling equipment can obtain the drilling parameters such as feed pressure, torque pressure, rotation speed, drilling speed and so on. The drilling index is converted to the drilling index RMR through the correlation between a drilling index and core RMR. The developed system verification was carried out through a slope and tunnel field application. From the field application result, the non-coring is four times faster than a coring and the drilling index RMR and core RMR are similar in the distribution range. This system is expected to predict the rock mass conditions of the TBM tunnel face ahead very quickly and efficiently.

Drilling Characteristics of Glass Fiber Reinforced Polyester (유리섬유 강화 폴리에스터의 드릴가공 특성)

  • 김성일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.90-95
    • /
    • 2000
  • Today fiber composite materials are routinely used in such wide applications as ships automobiles aircraft space vehi-cles containers sporting goods and appliances. The current knowledge of machining glass fiber reinforced polyester com-posites unfortunately is inadequate for its optimum utilization in many applications. Therefore This paper deals with drilling characteristic of glass fiber reinforced polyester composites. In the drilling of glass fiber reinforced polyester the quality of the cut surfaces is strongly dependent on the drilling parameters. drilling tests were carried out on glass fiber reinforced polyester using standard HSS tools. The material containing random chopped strand fibers and woven roving was fabricated by hand lay-up The entrance and exit surface of the holes was examined. The cutting force was also mea-sured to analyze the drilling characteristics,.

  • PDF

Assessment of Hydraulic Drilling Data on Homogeneous Rock Mass (균질암반에서의 유압식 천공데이터 평가)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Kim, Kwang-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.480-490
    • /
    • 2008
  • The drilling monitoring is a technique to assess rock mass properties by analyzing the mechanical quantities measured by drilling process. Since drilling survey can be conducted on real-time-basis for excavating blast holes or rockbolt holes, it may enables fast and quantitative prediction and evaluation of rock mass. Though a number of studies have been conducted on the drilling data, the selection of drilling parameters and numerical quantification of mechanical quantities or rock mass have not been well established yet. In this study, drilling tests were conducted with homogeneous rock specimen to identify drilling parameters and the relation of the drilling data. As a result, it is verified that above all drilling parameters, the percussion was the most important factor on the excavatability of hydraulic drilling.

Analytic Hierarchy Process Analysis on Correlation Between Drilling Error and Blasting Accuracy (발파공의 천공오차와 발파정확도의 상관성에 관한 현장조사 및 계층분석기법 연구)

  • Lee, Deok-Hwan;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.386-394
    • /
    • 2014
  • Drilling accuracy is known to be one of the most important factors determining blasting efficiency in mining by blast operation. Therefore analysing the causes of drilling error and preparing a countermeasure for minimizing drilling error are very important for blasting efficiency and safety. In this study, causes of drilling error are analyzed with dividing them into controllable factors and uncontrollable factors, and relationship between each cause is also comprehended through field measurement and AHP analysis. Finally, effective measures to help lower the drilling error are proposed with the results from weighting analysis for each factor.

Optimal Design of Ultrasonic Horn for Ultrasonic Drilling Processing of Ceramic Material (세라믹 소재 초음파 드릴링 가공을 위한 초음파 Horn의 최적 설계에 관한 연구)

  • Cha, Seung-hwan;Yang, Dong-ho;Lee, Sang-hyeop;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, there has been continuous technological development in the semiconductor industry, and semiconductor manufacturing technologies are being advanced and highly integrated. For this reason, ceramic material having excellent heat resistance, wear resistance, and conductivity are used as components in semiconductor manufacturing. Among them, the probe card's space transformer is used as ceramic material to prevent electronic signal noise during the electrical die sorting of semiconductor function testing. However, implementing a bulk-type space transformer with a thickness of 5.6 mm or more is challenging, and thus it is produced in a structure with a stacked ceramic film. The stacked space transformer has low productivity because it is difficult to ensure hole clogging and a precise shape. In this research, an ultrasonic horn is designed to manufacture a bulk-type ceramic space transformer through ultrasonic drilling. Vibration characteristics were analyzed according to the ultrasonic horn, and the natural frequency was measured.

Trend Analysis of Drilling Technology for Top-Hammer Drilling Machine (Top-Hammer 천공기 국내외 기술동향 분석)

  • Song, Chang-Heon;Kwon, Ki-Beom;Shin, Dae-Young;Hwang, Woon-Kyu;Lim, Jong-Hyuk;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.271-279
    • /
    • 2013
  • This report introduced the types of drilling equipment and their operation mechanisms. The state of the art technologies of the Top-hammer drill equipment were investigated and the technology level of Korean drill industry was compared to that of the advanced country. Based on the investigation, the necessity of fusion research and development in the Korean drilling technology and industry was discussed, and the future strategy to catch up with the advanced technology was suggested.