This paper describes an audio source separation that is based on nonnegative matrix factorization (NMF) and expectation maximization (EM). For stable and highperformance separation, an effective auxiliary source separation that extracts source residuals and reprojects them onto proper sources is proposed by taking into account an ambiguous region among sources and a source's refinement. Specifically, an additional NMF (model) is designed for the ambiguous region - whose elements are not easily represented by any existing or predefined NMFs of the sources. The residual signal can be extracted by inserting the aforementioned model into the NMF-EM-based audio separation. Then, it is refined by the weighted parameters of the separation and reprojected onto the separated sources. Experimental results demonstrate that the proposed scheme (outlined above) is more stable and outperforms existing algorithms by, on average, 4.4 dB in terms of the source distortion ratio.
Separation distance between industrial source and residential areas to avoid odor annoyance was investigated using AUSPLUME model. A Gaussian plume model (AUSPLUME) for the dispersion was used to calculate odor emission from ground level area source. Using the dispersion model to calculate ambient odor concentrations, the separation distance between industrial source and residental areas was defined by %HA (percentage of highly annoyed person) and odor percentile concentration (C98). The result was compared with the separation distance of various nation guidelines for livestock buildings. The calculated separation distance for industrial source showed similar pattern comparing with various guidelines for livestock buildings.
본 논문에서는 실제 환경에서 인접 배치된 무지향성 스테레오 마이크로폰을 활용하여 녹음받은 스테레오 오디오 신호를 양이간 강도차에 기반하여 원하는 방위각에 존재하는 음원을 추출하는 음원 분리 기법을 제안한다. 먼저, 최소 분산 무손실 응답빔형성기를 활용하여 스테레오 오디오 신호의 양이간 강도차를 극대화하고, 강도차 기반의 음원 분리 기법을 적용한다. 제안된 기법의 성능을 검증하기 위하여 stereo audio source separation evaluation campaign (SASSEC)에서 제공하는 객관적 성능평가 지표인 source-to-distortion ratio (SDR), source-to-interference ratio (SIR), sources-to-artifacts ratio (SAR)을 측정하였다. 측정한 결과, 음원 분리 기법에 빔형성기까지 적용한 결과가 높은 성능을 보인 것으로 평가되었다.
The IVA(Independent Vector Analysis) is a well-known FD-ICA method used to solve the frequency permutation problem. It generally works quite well for blind source separation problems, but still needs some improvements in the frequency bin permutation problem. This paper proposes a post-processing method which can improve the source separation performance with the IVA by fixing the remaining frequency permutation problem. The proposed method makes use of the correlation coefficient of power ratio between frequency bins for separated signals with the IVA-based 2-channel source separation. Experimental results verified that the proposed method could fix the remaining frequency permutation problem in the IVA and improve the speech quality of the separated signals.
본 논문에서는 패닝 기법을 이용하여 믹싱된 스테레오 음원에서 음원을 분리하는 방법에 대하여 고찰한다. 음원 분리 알고리즘은 다채널 포맷 변환을 위한 업믹스나 음질 개선, 고품질 음원 분리 등 다양한 응용분야에 사용될 수 있다. 본 논문에서 사용하는 음원 분리 알고리즘은 믹싱된 스테레오 채널을 시간-주파수 별로 PCA(Principal Component Analysis) 분석 방법을 이용하여 각각의 음원들이 패닝된 방향을 추정하며, 추정된 방향의 성분만을 추출하는 방향 필터링 과정을 거쳐 음원들을 독립적으로 분리 해 낸다. 실험을 통해 각 음원 분리 알고리즘의 성능을 평가하였다.
Source separation is a statistical method, the goal of which is to separate the linear instantaneous mixtures of statistically independent sources without resorting to any prior knowledge. This paper addresses a source separation algorithm which is able to separate the mixtures of sub- and super-Gaussian sources. The nonlinear function in the proposed algorithm is derived from the generalized Gaussian distribution that is a set of distributions parameterized by a real positive number (Gaussian exponent). Based on the relationship between the kurtosis and the Gaussian exponent, we present a simple and efficient way of selecting proper nonlinear functions for source separation. Useful behavior of the proposed method is demonstrated by computer simulations.
Independent component analysis (ICA)는 주어진 데이터를 통계적으로 독립인 요소들의 선형 결합으로 표시하는 통계학적 방법이다. ICA의 주요한 적용분야중의 하나는 source들의 선형 mixture로부터 어떠한 서전 정보도 없는 상태에서 원래의 통계학적 독립변수인 source를 복원하는 blind separation이다. ICA와 source separation을 위한 다양한 신경 학습 알고리듬이 제시되어왔다. ICA의 학습 알고리듬에서는 비선형 함수가 중요한 역할을 한다. 이 논문에서는 generalized 가우시안 prior를 도입하여 다양한 확률분포를 갖는 source들의 mixture를 분리하는 효율적인 source separation 알고리즘을 제시한다. 모의실험을 통하여 제안된 방법의 우수성을 살펴본다.
본 논문에서는 각 음원이 시간적 구조를 가졌을 경우 음원들을 분리해내는 확률적 음원분리 방법을 제안한다. 이를 위해 각 음원의 시간적 구조를 가우시안 프로세스(Gaussian process)로 모델링하고 기존의 음원분리 문제를 유사-가능도 최대화 문제(pseudo-likelihood maximization)로 공식화한다. 본 알고리즘을 통해 얻어진 데이타의 유사-가능도는 정규 분포이며 이는 가우시안 프로세스 회귀방법(Gaussian process regression)을 통해 쉽게 계산이 가능하다. 음원분리의 역혼합 행렬은 경도(gradient) 기반최적화 기법을 통해 데이타의 유사-가능도를 최대화하는 해를 찾음으로써 구해진다. 여러 실험을 통하여 제안 알고리듬이 몇 가지 특정 상황에서 기존의 분리 알고리듬들에 비해 우수한 성능을 보임을 확인 할 수 있다.
This paper addresses a method of convolutive source separation that based on SEONS (Second Order Nonstationary Source Separation) [1] that was originally developed for blind separation of instantaneous mixtures using nonstationarity. In order to tackle this problem, we transform the convolutive BSS problem into multiple short-term instantaneous problems in the frequency domain and separated the instantaneous mixtures in every frequency bin. Moreover, we also employ a H infinity filtering technique in order to reduce the sensor noise effect. Numerical experiments are provided to demonstrate the effectiveness of the proposed approach and compare its performances with existing methods.
본 논문에서는 다채널 음향 신호의 음원 분리를 수행하기 위하여, 빔공간-영역에서 다채널 비음수 행렬 분해 기법을 이용하는 음원 분리 시스템을 제안한다. 비음수 행렬 분해(NMF) 기법은 음원 분리에서 최근 널리 쓰이는 알고리즘이며, 특히 최근에는 다채널 비음수 행렬 분해(MC-NMF) 기법으로 발전하여 다채널 음향 신호에 대해서 적용되고 있다. 본 논문에서 제안하는 다채널 비음수 행렬 분해 기법은 빔공간-영역에서 수행되어, 기존의 다채널 비음수 행렬 분해 기법에 비해 좋은 성능을 가진다. 제안되는 비음수 행렬 분해 기법은 SiSEC 2010의 데이터셋을 이용하여 검증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.