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Flexible Nonlinear Learning for Source Separation

Seungjin Choi

Abstract - Source separation is a statistical method, the goal of which is to separate the linear instantaneous mixtures of statistically
independent sources without resorting to any prior knowledge. This paper addresses a source separation algorithm which is able to
separate the mixtures of sub- and super-Gaussian sources. The nonlinear function in the proposed algorithm is derived from the
generalized Gaussian distribution that is a set of distributions parameterized by a real positive number (Gaussian exponent). Based on the
relationship between the kurtosis and the Gaussian exponent, we present a simple and efficient way of selecting proper nonlinear functions
for source separation. Useful behavior of the proposed method is demonstrated by computer simulations.

Keywords - Independent component analysis, generalized Gaussian distribution, natural gradient, source separation, unsupervised learning.

1. Introduction

Source separation is a statistical method, the goal of
which is to recover unknown sources (latent variables) from
their linear instantaneous mixtures, without resorting to any
prior information except for the assumption of statistical
independence of sources. Source separation is a fundamen-
tal problem encountered in a variety of applications such as
blind beamforming [1], multiuser communications [2],
speech processing [3], and biomedical signal analysis [4]
where multiple sensors are involved.

In the context of source separation, it is assumed that an

m-dimensional observation vector x(= [ x,(8 - x, (D17
is generated by
x(H= As(d M

where A=sR™” (m=n) is called the mixing matrix and
s(f) is an n-dimensional vector whose elements are called
sources. The task of source separation is to design a
demixing filter W such that the filter output vector y(#) =
W x(#) is a possibly re-scaled and re-ordered source vector
[5], [3]. In other words, source separation seeks a linear
mapping W from the observation vector x(f) to y(f) such
that the transformed vector p{#) satisfies the following
decomposition:

y(H= Wx(d)
= PAs(?) )

where P is some permutation matrix and A is some
nonsingular diagonal matrix. It is known [5] that the de-
composition (2) is achieved if {y(s)} are statistically in-
dependent. Along this line, source separation is closely re-
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lated to the method known as independent component
analysis (ICA), the task of which is to decompose the ob-
servation vector into a linear sum of independent compo-
nents [6].

Since Jutten and Herault's first solution to source sep-
aration and ICA, several methods have been developed.
These include robust neural networks [7], [8], algebraic
methods [9], [5], nonlinear information maximization [3],
mutual information minimization [10], nonlinear principal
component analysis [11], [12], maximum likelihood esti-
mation [13], [14], the equivariant method [15], and cross-
cumulants based methods [16], [17].

In typical adaptive source separation algorithms, it is
essential to choose proper nonlinear functions for successful
separation. It was shown in [18] that the optimal nonlinear
function is the score function that depends on the prob-
ability distribution of source. In the task of source separa-
tion, neither sources nor their probability distributions are
available in advance. Thus true probability density of source
is replaced by the hypothesized density model, then an
appropriate nonlinear function is selected. For the separa-
tion of mixtures of super- and sub-Gaussian sources (hybrid
mixtures), the smart choice of nonlinear function is neces-
sary. Several source separation algorithms have been devel-
oped to deal with hybrid mixtures {19], [20}, [21], [22].
[23]. In these methods [19], [20], [21], [22], [23], two
different nonlinear functions were assumed and its selection
was done according to the estimated kurtosis of demixing
filter output. Two different nonlinear functions were rather
heuristically adopted, or were derived from specific super-
and sub-Gaussian distributions.

In the present paper, we present a general but efficient
way of choosing the nonlinear function in source separation
algorithms. We employ the generalized Gaussian distribu-
tion that is a set of distributions parameterized by one real
positive number (Gaussian exponent). Since the generalized
Gaussian distribution is able to model most uni-modal
distributions, the nonlinear function is flexible in the sense
that its shape varies depending on the Gaussian exponent.
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Based on the relationship between the kurtosis and the
Gaussian exponent, we present a simple but efficient way
of choosing the Gaussian exponent according to the esti-
mated kurtosis.

The rest of this paper is organized as follows. Next
section is devoted to give a brief review of natural (or
relative) gradient source separation algorithms. In Section
III, the generalized Gaussian distribution is introduced and
the relationship between the kurtosis and the Gaussian ex-
ponent is discussed. In the framework of natural gradient
source separation algorithms, a smart way to select a non-
linear function is introduced in Section IV. A practical
method of source separation with flexible nonlinearity is
also discussed in Section IV. In Section V, computer
simulations are provided to demonstrate a successful result
of separation of § sources with arbitrary distributions. A
comparison with the extended Infomax algorithm [23], [24]
is also made. Conclusions are drawn in Section VI.

2. Natural Riemannian Gradient Based Ica
Algorithms

Gradient descent learning is a popular method for the
purpose of minimizing a given loss function. When a pa-
rameter space (on which a loss function is defined) is a
Euclidean space with an orthogonal coordinate system, the
conventional gradient gives the steepest descent direction.
However, if a parameter space is a curved manifold (Rie-
mannian space), an orthonormal linear coordinate system
does not exist and the conventional gradient does not give
the steepest descent direction [24]. Recently the narural
gradient was proposed by Amari [24] and was shown to be
efficient in on-line learning. See [24] for more details of
the natural gradient. Note that the relative gradient devel-
oped independently by Cardoso and Laheld [15] is identical
to the natural gradient in the context of ICA. In this sec-
tion, we briefly review two natural gradient based ICA
algorithms.

A. Natural Riemannian Gradient
Let us consider a linear network whose output y(?) is
described by

¥ = Wa(?) 3)

where (//)th element of the matrix W, i.e.,, w; represents a
synaptic weight between y(# and x,(#). In the limit of ze-
ro noise, for the square 1CA problem (equal number of
sources and sensors, the result can be easily extended to the
case m > n), maximum likelihood or mutual information
minimization leads to the following loss function [10], [25]:

L(W)=—logldet W|— }:1 log p{yy) 4

where p/ -) represent the probability density function for
ith source. Let us define

O 5)

With this definition, the gradient of the loss function (4) is

vi(w)=-2LW)
oW

=— W "+ely) 2’ (6)

where ¢(y) is the element-wise function whose ith

component is ¢,(v;). For shorthand notation, the time index
t was dropped.
The natural Riemannian gradient (denoted by VL(W))
learning algorithm for W is given by [24], [15], [8]
AW=—7VL(W)
—— XL Ww—yi-e» W ()
where 7>0 is a learning rate.
B. Natural Riemannian Gradient in Orthogonality Con-
straint
Natural Riemannian gradient in orthogonality constraint
has been recently proposed by Amari [26]. Let us assume

that the observation vector x has already been whitened by
preprocessing and source signals are normalized, i.c.,

Elxx'}= I, (@)
E(ss'}=1I, )
From (8) and (9), we have
T
AA'= 1T, (10)
The m row vectors of A are orthogonal # dimensional unit
vectors. The set of » dimensional subspaces in R” is called

Stiefel manifold. The natural Riemannian gradient in the
Stiefel manifold was calculated by Amari [26]

VL(W)=VLIW)- MVL(W)}'W (1
Using this result, the natural gradient is given by

SLW)=¢(3) 2"~ y0 (N W (12)
Then the learning algorithm for W is given by

AW=— 7 VI(W)
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=—ple(») 2 ~ vy () W) (13)

It should be noted that when m=n, the matrix W is orthog-
onal in each iteration step, so this reduces to the following
form

AW=—7{p(») ¥ — yo ' (N} W (14)

In practice, due to the skew-symmetry of the term ¢(y) v~
— v¢"(y), decorrelation (or whitening) processing can be
performed simultaneously together with separation. With
taking this into account, the algorithm becomes Cardoso
and Laheld's EASI algorithm [15]

AW=np{I- vy —o(3) v + e (MW (15)

The algorithms aforementioned belong to a class of on-
line learning algorithms which is based on stochastic ap-
proximation. We can also consider the batch versions of the
algorithms by estimating time average instead of instanta-
neous realization. For example, the batch version of the
algorithm (15) is given by

AW= 91— 33 >—<o(3) y >+ e (3>} W, (16)

where ¢ - > denotes the time average operation.

3. Generalized Gaussian Density Model For

Sources

This section introduces the generalized Gaussian distri-
bution and reveals the relationship between the kurtosis and
the Gaussian exponent.

A. The Generalized Gaussian Distribution

The generalized Gaussian probability distribution is a
set of distributions parameterized by a positive real number
a, which is usually referred to as the Gaussian exponent of
the distribution. The Gaussian exponent « controls the
“peakiness’” of the distribution. The probability density
function (PDF) for a generalized Gaussian is described by

a -
— (17)

Ny a)= 1
2/111(*;)

where [(x) is Gamma function given by

= [ e (18)

Note that if o=1, the distribution becomes the standard
“Laplacian” distribution. If «=2, the distribution is stan-
dard normal distribution (see Fig. 1).
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Fig. 1 The generalized Gaussian distribution is plotted for
several different values of Gaussian exponent, ¢ =
08,1, 2, 4.

B. The Moments of the Generalized Gaussian Distri-
bution
In order to fully understand the generalized Gaussian
distribution, it is useful to look at its moments (specially
2nd and 4th moments which give the kurtosis). The nth
moment of the generalized Gaussian distribution is given
by

M,= fiy"p(y a)dy (19)

If n is odd, the integrand is the product of an even function
and an odd function over the whole real line, which
integrates to zero. In particular, this implies that the mean
of the distribution given in (17) is zero and it is symmetric
about its mean (which means its skewness is zero).

The even moments, on the other hand, completely char-
acterize the distribution. In computing these moments, we
use the following integral formula (see pp. 386 in [27])

w© ) Y
v le may=-L Ty (20)

The 2nd moment of the generalized Gaussian distribution
is determined by

M= [ so(nady

o[y 131
ey Y

——~—al—e oy 2D
2A(--)

We are integrating only over the positive values of y, we
can remove the absolute value in the exponent. Thus

o0 A(l a
My=—"5— [y gy 2)
1 0
AF(TI)

Making the substitution z=~3§ ( dy= Adz), we find
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2 w
M= Ml f 2%e "*'dz (23)
n-)"°
a
Invoking the integral formula (20), we have
3
=)
My=2*—— (24)
)

In similar way, we can find the 4th moment given by

n2)
M= 1 (25)
-
In general, the (2k)th moment is given by
2k+1 )
Moy=A 2k*+ (26)
n-:)

C. Kurtosis and Gaussian Exponent

The kurtosis is a nondimensional quantity. It measures
the relative peakedness or flatness of a distribution. A
distribution with positive kurtosis is termed /leptokurtic
(super-Gaussian). A distribution with negative kurtosis is
termed platykurtic (sub-Gaussian). The kurtosis of the
distribution is defined in terms of the 2nd- and 4th-order
moments as

x(p)=-1_5 @7

M;

where the constant term -3 makes the value zero for
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For a generalized Gaussian distribution, the kurtosis can
be expressed in terms of the Gaussian exponent, given by

5yl
=)I(-)
¥ =—t 3 (28)
I—Q(i)
a

The plot of kurtosis x, versus the Gaussian exponent ¢«
for leptokurtic and platykurtic signals are shown in Fig. 2.

4. The Algorithm

In adaptive source separation algorithms (7) and (15), the
nonlinear function ¢/y,) is given by Eq. (5). The non-
linear function depends on probability distribution of source,
p{ -) which is not available in advance. Popular hypoth-
esized density modeis are: (1) hyperbolic-Cauchy distribu-
tion (for super-Gaussian source) [28]; (2) Laplacian dis-
tribution (for super-Gaussian source) [29]; (3) Pearson mix-
ture model (for sub-Gaussian) [22], etc. The hyperbolic-
Cauchy distribution leads to the hyperbolic tangent nonlin-
ear function (one of widely used sigmoid nonlinearity) and
the Laplacian distribution gives the signum function. These
nonlinear functions were known to be proper choices for
super-Gaussian sources. For sub-Gaussian sources, the cubic
nonlinear function has been a favorite choice. It is closely
related to the minimization of kurtosis [15], [2].

For the separation of sub- and super-Gaussian mixtures,
Cichocki et al. [21] suggested the nonlinearity-switching
method where either cubic function or hyperbolic tangent
function is selected, according to the sign of kurtosis of
estimated source. Similarly, Girolami and Fyfe [19] sug-
gested

Platykurtic distribution

T

Lo L . . L [
2 3 4 5 6 7 8 9 10

Gaussian exponent

Fig. 2 The plot of kurtosis x , versus Gaussian exponent «: (a) for leptokurtic signal; (b) for platykurtic signal.
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#(y) = y;+ tanh(y,) for super-Gaussian source and g(y,) =
v,— tanh(y,) for sub-Gaussian source. This method was e-
laborated later in {22], [23] and is known as the extended
infomax algorithm.

Now we consider the generalized Gaussian density model
that was introduced in previous section. Each hypothesized
density function p,( - ) is modeled as the generalized Gauss-
ian density, i.e.,

a; 7|“A_:,|a,

e
2Ar(-L)

a;

py)= (29

From this density model, the (normalized) nonlinear func-
tion ¢y, is given by

(y)= dlogp{y;)
PANY, av;

=ly]“ ' san(v) (30

where sgn(y,) is the signum function of y;. Note that for
a;=1, (30) becomes a signum function (which can also
be derived from the Laplacian density model), for «,=4,
(30) becomes a cubic function which is known to be a
good choice for sub-Gaussian source. As described in
Section III, the nonlinear function in (30) is somewhat
universal and includes some popular nonlinear functions as
its special cases.

The next problem is how we choose a proper value of
the Gaussian exponent {z,} for successful separation. The
relationship between the kurtosis and the Gaussian exponent
is summarized in Fig. 2. Once we obtain the kurtosis of
estimated source, we choose a corresponding value of the
Gaussian exponent according to the relation in Fig. 2. This
can be done in a look-up table manner. The kurtosis of y,

x; can be estimated via the following iterative algorithm:

M(t+1)

x(t+1)= T 3 (31)
where

M (t+ D) =(1— M, (H+ dyHI* (32)

My(t+ 1) =1~ My (D + sy DI (33)

where § is a small constant, say, 0.01.
In general, the estimated kurtosis of y, that is calculated

in (31) does not exactly match the
However, the estimated kurtosis of y; gives us an idea

what type of signal is. In other words, at least we can see
whether the demixing filter output belongs to sub-Gaussian
signal, or super-Gaussian signal. It was shown in [25], [18]

kurtosis of source s,.
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Fig. 3 The shape of nonlinear function ¢(3)$ for diffe-
rent values of Gaussian exponent o= 4, 1.5, 1, 0.8

that the reasonable mismatch between the hypothesized
density and the true density does not degrade the per-
formance of the source separation algorithms (7) and (15).
Thus it might be sufficient to use only several values of the
Gaussian exponent for successful separation. For sub-Gauss-
ian source we observe that the kurtosis does not change
much with respect to the Gaussian exponent (see Fig. 2).
This observation suggests only one proper choice of the
Gaussian exponent may be enough for the separation of
sub-Gaussian source. In practice, we choose «;=4 which
gives the cubic nonlinear function if the estimated kurtosis
of y, is negative. For super-Gaussian signals, one can see
that kurtosis varies much with respect to the Gaussian
exponent (see Fig. 2), unlike sub-Gaussian signals. Dis-
tinctively different shapes of the nonlinear function in (30)
for super-Gaussian signal ( ,<2) occurs: (1) for «,<{1; (2)
for a;,=1; (3) for
a;=.8, a;=1, and o;=1.3 (see Fig. 3). One exemplary
illustration is as follows:

o Choose «,=10.8 for x,220.

e Choose ;=1 for 5<x,<20.

¢ Choose @,;=1.3 for 0<x;<5.

e Choose @;=4 for x<O0.

Here we treat the signal whose kurtosis is greater than 20,
as a very spiky signal. Note that this strategy is one
possible illustration. Slightly different choices are also
possible, but we found that these choices worked success-
fully through extensive computer simulations.

1<a;<2. For example, we choose

5. Simulations

A. Simulation 1

We have performed an experiment with two super-Gauss-
ian sources and two sub-Gaussian sources (see Fig. 4(a)).
The kurtoses of sources are -1.2, -1.5, 3.3, 3.6. They were
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artificially mixed using the mixing matrix 4 given by

0.155 0.204 0.431 0.739

— 10.526 0.511 0.404 0.614
A= 0.205 0.392 0.306 0.941 (34

0.141 0.937 0.656 0.182

We have applied the algorithm (15) with the method of
selecting Gaussian exponents {e;} that was described in

Section IV (this approach is called the flexible source sepa-
ration algorithm).
As a performance measure, we have used the perfor-
mance index [15], [30] defined by
lg il :

PI= 2{(;1W_1)+

(E i) (39)

where g is the (i)th element of the global system matrix
G= WA and max ,g,; represents the maximum value
among the elements in the ith row vector of G, max ;g
does the maximum value among the elements in the ith

(©

column vector of G. When perfect signal separation is
achieved, the performance index P/ is zero. In practice, it
is very small number.

For fair comparison with the extended infomax algorithm
[23], [22], the batch versions of both algorithms were used.
The learning rate »=0.1 was used and the synaptic weight
matrix W was initialized as identity matrix. Mixtures and
recovered signals by the flexible source separation algo-
rithm and the extended infomax are shown in Fig. 4. Per-
formance comparison between the flexible source separation
algorithm and the extended infomax algorithm is shown in
Fig. 5. In Fig. 5, the batch versions of both algorithms
were used and prewhitening of data was not performed for
both algorithms for fair comparison. One can observe that
our flexible source separation algorithm gives faster conver-
gence and better performance. Faster convergence might be
due to the natural gradient in Stiefel manifold, i.e., the
decorrelation is performed together with separation. Better
performance might result from the flexible nonlinear func-
tion controlled by the Gaussian exponent in the flexible
source separation algorithm in contrast to the fixed suitable
nonlinear function employed by the extended infomax.

2000 3000

(d)

Fig. 4 Experimental result in Simulation 1: (a) original source signals; (b) mixture signals; (c) recovered signals by the
extended infomax algorithm; (d) recovered signals by the proposed algorithm (flexible ICA).
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Fig. 5 The evolution of performance index in Simulation |
: solid line is for the proposed algorithm and dotted
line is for the extended infomax algorithm.

B. Simulation 2

We have performed simulations with eight different
sources (see Fig. 6). Sources consist of digitized speech,
the sound of ringing a bell, laughing, music, chirping, a
steam-whistle, and two noises (one has uniform distribution
and the other has Gaussian distribution). Sources have dif-
ferent probability distributions. It was assumed that sources
nor their probability distributions were completely unknown
in advance.

All the elements of the mixing matrix A were generated
randomly. Then, source signals were linearly transformed
by the mixing matrix. Mixture signals and their corre-
sponding spectrograms are shown in Fig. 7.

In this simulation, we have applied the algorithm (15)
with our method of selecting nonlinear functions. The
learning rate 7= ,001 was used and the demixing filter W
was initially set as the identity matrix. The recovered
signals and their corresponding spectrograms are shown in
Fig. 8. The Hinton's diagram of the elements of the global
system matrix ‘G is shown in Fig. 9. One can see that the
matrix G is very closed to the generalized permutation
matrix which means sources are successfully recovered.

6. Conclusions

We have presented an efficient method of learning the
shapes of nonlinear functions which is essential technique
for the separation of the mixtures of super- and sub-Gauss-
ian sources. We have introduced the generalized Gaussian
density model as a hypothesized density. Since the gener-
alized Gaussian distribution is able to model most uni-mod-
al distributions, our nonlinear function is adequate for the
separation of hybrid mixtures. In contrast to most existing
methods [20], {217, {19], {22}, [23] where the nonlinear
function is switched between two different forms according
to the sign of the estimated kurtosis, the nonlinear function
in our proposed method has a variety of different forms,

and its shape is controlled by the Gaussian exponents
whose proper value is selected from the estimated kurtosis
of the demixing filter output. Useful behavior of the
proposed approach was demonstrated by computer
simulation results.
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Fig. 6 Original sound sources and their corresponding
spectrograms in Simulation 2.
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Fig. 8 Recovered signals using the proposed algorithm and
their corresponding spectrograms in Simulation 2.
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column
9 Hinton diagram of the global system matrix G in
Simulation 2. Each square's area represents an ele-
ment's magnitude.
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