• Title/Summary/Keyword: source/drain

Search Result 578, Processing Time 0.035 seconds

High-Performance, Fully-Transparent and Top-Gated Oxide Thin-Film Transistor with High-k Gate Dielectric

  • Hwang, Yeong-Hyeon;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.276-276
    • /
    • 2014
  • High-performance, fully-transparent, and top-gated oxide thin-film transistor (TFT) was successfully fabricated with Ta2O5 high-k gate dielectric on a glass substrate. Through a self-passivation with the gate dielectric and top electrode, the top-gated oxide TFT was not affected from H2O and O2 causing the electrical instability. Heat-treated InSnO (ITO) was used as the top and source/drain electrode with a low resistance and a transparent property in visible region. A InGaZnO (IGZO) thin-film was used as a active channel with a broad optical bandgap of 3.72 eV and transparent property. In addition, using a X-ray diffraction, amorphous phase of IGZO thin-film was observed until it was heat-treated at 500 oC. The fabricated device was demonstrated that an applied electric field efficiently controlled electron transfer in the IGZO active channel using the Ta2O5 gate dielectric. With the transparent ITO electrodes and IGZO active channel, the fabricated oxide TFT on a glass substrate showed optical transparency and high carrier mobility. These results expected that the top-gated oxide TFT with the high-k gate dielectric accelerates the realization of presence of fully-transparent electronics.

  • PDF

ELECTRICAL CHARACTERISTICS OF PENTACENE THIN FILM TRANSISTORS WITH STACKED AND SURFACE-TREATED GATE INSULATORS (러빙 처리된 표면의 적층 절연막을 가지는 Pentacene TFT의 전기적 특성)

  • Kang, Chang-Heon;Lee, Jong-Hyuk;Park, Jae-Hoon;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1546-1548
    • /
    • 2002
  • In this paper, the electrical characteristics of pentacene thin film transistors(TFTs) with stacked and surface-treated gate insulators have been investigated. The semiconductor layer of pentacene was thermally evaporated onto the stacked gate insulators. For the gate insulating materials. PVP(PolyvinylPhenol) and polystyrene were spin-coated with two different stacking orders, PVP-polystyrene and polystyrene-PVP. Rapid solvent evaporation during the spin-coating processes of these insulating layers produces non-equilibrium phase morphologies accompanied by surface undulations on gate insulator interfaces. This non-equilibrium phase morphology affects the growth mode of the subsequent pentacene layer. Therefore, in order to smoothen the gate dielectric surfaces, gate dielectric surfaces were rubbed laterally along the direction from the drain to the source TFTs with with stacked and surface-treated gate insulators have provided improved operational characteristics.

  • PDF

The Elimination of ion Implantation Damage at the Source/Drain Junction of Poly-Si TFTs (이온주입에 의한 소오스/드레인 접합부 결함을 제거한 다결정 실리콘 박막 트렌지스터)

  • Kang, Su-Hyuk;Jung, Sang-Hoon;Lee, Min-Cheol;Park, Kee-Chan;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1410-1412
    • /
    • 2002
  • TFT의 게이트 전극을 형성하기 전에 소오스/드레인 이온 주입과 ELA를 수행함으로써 이온 주입에 의해 발생하는 결정 결함을 줄이는 새로운 poly-Si TFT를 제안한다. 한번의 ELA 공정을 통해서 채널 실리콘 박막의 결정화와 소오스/드레인의 불순물 활성화를 동시에 이루어 접합부의 결함을 치유하였고, 이온 주입에 의해서 비정질화된 소오스/드레인 실리콘과 채널 비정질 실리콘의 용융조건 차이를 이용하여 소오스/드레인 접합부에 실리콘 그레인의 수평성장을 유도하였다. 제안된 소자는 기존의 소자(이동도 : 86 $cm^2/V{\cdot}S$, ON/OFF 전류비 $6.1{\times}10^6$)에 비해 우수한 특성(이동도 : 171 $cm^2/V{\cdot}S$, ON/OFF 전류비 $4.1{\times}10^7$)을 나타내었다. LDD나 off-set 구조 없이도 소오스/드레인 접합부의 결함이 완전히 제거되어 누설전류가 감소하였고 소오스/드레인 접합부 결함이 있던 자리에 1 ${\mu}m$ 이상의 수평성장 그레인이 위치함으로써 ON 전류도 증가하여 ON/OFF 전류비가 크게 개선되었다.

  • PDF

Design and Evaluation of a Rotation Table using Air Bearings for Electron Beam Mastering (전자빔 마스터링을 위한 공기베어링 응용 고진공 회전테이블의 설계 및 진공특성 평가)

  • Khim, Gyung-Ho;Song, Chang-Kyu;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.132-138
    • /
    • 2008
  • Recently, mastering processes for high density optical disc such as Blu-ray disc rely on electron beams, which are operable in only vacuum. In the mastering process, one of the most important tasks is to design precision stages for providing precise positioning of the works with respect to the source in a high vacuum environment. In this paper, we have developed a precision rotation table usable in the electron beam mastering. The rotation table adopted air bearings for a high positioning repeatability and velocity stability. The air leakage from the air bearings has been minimized by employing the differential exhaust scheme using three steps of air drain. The design parameters such as diameters of exhaust lines, seal lengths, and pumping speeds were decided according to the optimization method using genetic algorithm. The performance on the vacuum level of the rotation table was evaluated experimentally and theoretically. The results indicate that a vacuum level of $10^{-4}$ Pa is achieved with operation of air bearings in a vacuum chamber, which is sufficient for the electron beam mastering.

Fabrication of Organic Thin Film Transistor(OTFT) for Flexible Display by using Microcontact Printing Process (미세접촉프린팅공정을 이용한 플렉시블 디스플레이 유기박막구동소자 제작)

  • Kim K.Y.;Jo Jeong-Dai;Kim D.S.;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.595-596
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and low-temperature processes. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing which is high-resolution lithography technology using polydimethylsiloxane(PDMS) stamp. The OTFT array with dielectric layer and organic active semiconductor layers formed at room temperature or at a temperature tower than $40^{\circ}C$. The microcontact printing process using SAM(self-assembled monolayer) and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even nano size, and reduced the procedure by 10 steps compared with photolithography. Since the process was done in low temperature, there was no pattern transformation and bending problem appeared. It was possible to increase close packing of molecules by SAM, to improve electric field mobility, to decrease contact resistance, and to reduce threshold voltage by using a big dielecric.

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

a-Si TFT 제작시 RF-power 가변에 따른 전기적 특성

  • Baek, Gyeong-Hyeon;Jeong, Seong-Uk;Jang, Gyeong-Su;Yu, Gyeong-Yeol;An, Si-Hyeon;Jo, Jae-Hyeon;Park, Hyeong-Sik;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.116-116
    • /
    • 2011
  • 오늘날 표시장치는 경량, 고밀도, 고해상도 대면적화의 요구에 의해 TFT-LCD의 발전이 이루어졌다. TFT에는 반도체 재료로서, Poly-Si을 사용하는 Poly-Si TFT와 a-Si:H를 이용하는 a-Si;H TFT가 있는데 a-Si는 $350^{\circ}C$ 이하의 저온으로 제작이 가능하여 많이 사용되고 있다. 이러한 방향에 맞추어 bottom gate 구조의 a-Si TFT 실험을 진행하였다. P-type silicon substrate ($0.01{\sim}0.02{\Omega}-cm$)에 gate insulator 층인 SiNx (SiH4 : NH3 = 6:60)를 200nm 증착하였다. 그리고 그 위에 active layer 층인 a-Si (SiH4 : H2 : He =2.6 : 10 : 100)을 다른 RF power를 적용하여 100 nm 증착하였다. 그 위에 Source와 Drain 층은 Al 120 nm를 evaporator로 증착하였다. active layer, gate insulator 층은 ICP-CVD 장비를 이용하여 증착하였으며, 공정온도는 $300^{\circ}C$ 로 고정하였다. active layer층 증착시 RF power는 100W, 300W, 500W, 600W로 가변하였고, width/length는 100 um/8um로 고정하였다. 증착한 a-Si layer층을 Raman spectroscope, SEM 측정 하였으며, TFT 제작 후, VG-ID, VD-ID 측정을 통해 전기적 특성인 Threshold voltage, Subthreshold swing, Field effect mobility, ON/OFF current ratio를 비교해 보았다.

  • PDF

Control of the Gold Electrode Work Function for High Performance Organic Thin Film Transistors (표면개질된 금 전극의 일함수 조절을 통한 고성능 유기박막 트랜지스터 개발)

  • Park, Yeong Don
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-292
    • /
    • 2012
  • Au electrodes modified with self-assembled monolayers (SAMs) were used to control the work function of source/drain electrodes in triethylsilylethynyl anthradithiophene (TES ADT)-based organic thin film transistors (OTFTs). By using benzothiol (BT) and pentafluorobenzothiol (PFBT) SAMs, the hole injection barrier between Au and the highest occupied molecular orbital (HOMO) of TES ADT was controlled. After a solvent annealing, TES ADT OTFTs with PFBT SAM-treated Au electrodes were found to exhibit high field-effect mobilities of $0.05\;cm^2/Vs$ and on/off current ratios of $10^6$.

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors by AZO/Ag/AZO Multilayer Electrode

  • No, Young-Soo;Yang, Jeong-Do;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • We fabricated an a-IGZO thin film transistor (TFT) with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = 400/50 ${\mu}m$) showed a subs-threshold swing of 3.78 V/dec, a minimum off-current of $10^{-12}$ A, a threshold voltage of 0.41 V, a field effect mobility of $10.86cm^2/Vs$, and an on/off ratio of $9{\times}10^9$. From the ultraviolet photoemission spectroscopy, it was revealed that the enhanced electrical performance resulted from the lowering of the Schottky barrier between a-IGZO and Ag due to the insertion of an AZO layer and thus the AZO/Ag/AZO multilayer would be very appropriate for a promising S/D contact material for the fabrication of high performance TFTs.

Electrical Characteristics of Pentacene Thin Film Transistors.

  • Kim, Dae-Yop;Lee, Jae-Hyuk;Kang, Dou-Youl;Choi, Jong-Sun;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.69-70
    • /
    • 2000
  • There are currently considerable interest in the applications of conjugated polymers, oligomers, and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field-effect transistors and light-emitting diodes. In this study, pentacene thin-film transistors (TFTs) were fabricated on glass substrate. Aluminums were used for gate electrodes. Silicon dioxide was deposited as a gate insulator by PECVD and patterned by reactive ion etching (R.I.E). Gold was used for the electrodes of source and drain. The active semiconductor pentacene layer was thermally evaporated in vacuum at a pressure of about $10^{-8}$ Torr and a deposition rate $0.3{\AA}/s$. The fabricated devices exhibited the field-effect mobility as large as 0.07 $cm^2/V.s$ and on/off current ratio as larger than $10^7$.

  • PDF