• Title/Summary/Keyword: sounder

Search Result 250, Processing Time 0.026 seconds

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

Evaluation of Depth Measurement Method Based on Spectral Characteristics Using Hyperspectrometer (초분광 스펙트로미터를 활용한 분광특성 기반의 수심 측정 기법 적용성 검토)

  • You, Hojun;Kim, Dongsu;Shin, Hyoungsub
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.103-119
    • /
    • 2020
  • Recently, the rapid redeposition and erosion of rivers artificially created by climate change and the Four Rivers Restoration Project is questionable. According to the revised law in Korea, the river management agency will periodically carry out bed changes surveys. However, there are technical limitations in contrast to the trend of increasing spatial coverage, density and narrowing of intervals. National organizations are interest in developing innovative bed changessurvey techniquesfor efficiency. Core of bathymetry survey is to measure the depth of rivers under a variety of river conditions, but that is relatively more risky, time-consuming and expensive compared to conventional ground surveys. To overcome the limitations of traditional technology, echo sounder, which has been mainly used for ocean depth surveying, has been applied to rivers. However, due to various technical limitations, it is still difficult to periodically investigate a wide range of areas. Therefore, technique using the remote sensing has been spotlighted as an alternative, especially showing the possibility of depth measurement using spectral characteristics. In this study, we develop and examine a technique that can measure depth of water using reflectance from spectral characteristics. As a result of applying the technique proposed in thisstudy, it was confirmed that the measured depth and the correlation and error corresponding to 0.986 and 0.053 m were measured in the depth range within 0.95 m. In the future, this study could be applied to the measurement of spatial depth if it is applied to the hyperspectral sensor mounted on the drone.

Studies on Fish Distribution Characteristics Using a Scientific Echo Sounder in the Yellow Sea (음향조사에 의한 황해 주요어족생물의 분포특성에 관한 연구)

  • 황두진;신형효;강돈혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.140-148
    • /
    • 2002
  • The primary goal of this study is to determine the distribution characteristics using a scientific echo sounder in the Yellow Sea west of South Korea. The survey was carried out between 33$^{\circ}$00'N~37$^{\circ}$00'N latitude and 124$^{\circ}$00'E~126$^{\circ}$00'E longitude during the months of May and August, 1999 and April, 2000. The ships used in this survey were the R/V Chung-kyeong(G/T 300) and R/V Dong-baek(G/T 1,050) of Yeosu National University. The results obtained are as follows : 1. From the oceanographic data the Yellow Sea were divided into three sea areas which were the western waters of Chejudo, Mokpo and Kunsan. The oceanographic conditions were different in each of these three areas and the western waters of Chejudo were higher about 1~5$^{\circ}C$ more than the western waters of Gunsan. Generally, thermoclines were presented clearly in all three areas, but more so in August than in May according to seasons. 2. The horizontal distribution of S$_{A}$(area backscattering coefficient per unit area) value is that the western sea waters of Chejudo area are higher than that of the western sea waters of Mokpo and Gunsan. 3. The vortical distribution of S$_{A}$ value varies with thermocline that the harder thermocline is, the higher the S$_{A}$ value is. 4. The S$_{A}$ values on the types of biomass distribution are different with frequency. At the 38kHz, the demersal schools have higher values than the pelagic schools. At the 120kHz, the pelagic schools have higher values than the demersal schools.

Classification of Sedimentary Facies Using IKONOS Image in Hwangdo Tidal Flat, Cheonsu Bay (IKONOS 영상을 이용한 천수만 황도 갯벌 표층 퇴적상 분류)

  • Ryu, Joo-Hyung;Woo, Han Jun;Park, Chan-Hong;Yoo, Hong-Rhyong
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.121-132
    • /
    • 2005
  • To classify the surface sedimentary facies using IKONOS image collected over Hwangdo tidal flat in Cheonsu Bay, the optical reflectance was compared for characterizing various sedimentary environments such as grain size, tidal channel pattern and area ratio of surface remnant water. The intertidal DEM (Digital Elevation Model) was generated by echo-sounder for analyzing the relationship between IKONOS image and sedimentary environments including topography. The boundary of the optical reflectance between mud-mixed facies and sand facies was distinct, and discrimination of the associated sandbar feature was also possible. The mud-mixed facies coupled with intricate tidal channels is confined to the relatively hi호 topography of Hwangdo tidal flat. The boundary between mud and mixed flat was indistinct in IKONOS optical reflectance but it would have a difference in the area ratio of surface remnant water. The dark area in the image represented the well developed sand facies having a lot of surface remnant water due to the relatively low surface topography. The overall accuracy of characterizing the surface sediment facies by maximum likelihood classification method was 86.2 %. These results demonstrate that high spatial resolution satellite imagery such as IKONOS coupled with knowledge of grain size, surface remnant water and tidal channel network can be effectively used to characterize the surface sedimentary facies (mud, mixed and sand) network of the tidal flat environments.

  • PDF

Study on the Measurement System for MIMO Channel Considering Urban Environment at Microwave Frequencies (도심 환경을 고려한 마이크로파 대역 MIMO 전파 채널 측정 시스템에 관한 연구)

  • Lim, Jae-Woo;Kwon, Se-Woong;Moon, Hyun-Wook;Park, Yoon-Hyun;Yoon, Young-Joong;Yook, Jong-Gwan;Jeong, Jin-Soub;Kim, Jong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1142-1149
    • /
    • 2007
  • In this paper, the development of wideband MIMO channel sounder and a pilot measurement result is described for research on the multi antenna radio propagation characteristics considering urban environment at microwave frequencies. We developed $4{\times}4$ MIMO(BW:100 MHz) channel sounder using the high speed switching mechanism and periodic pseudo random binary signals method considering next generation mobile communication system. A pilot measurement campaign at the urban area of Bundang is presented for confirmation of system performance. From the analysis of measurement data, wideband path loss exponent of 3.7 and 8 GHz band is 1.79 and 1.76. Average RMS delay spread is 200 ns and 42 ns respectively. From the experiment results, operation of this measurement system is confirmed considering research for a coverage, SNR and channel capacity in urban environment at microwave frequencies.

Characteristics of accretion and scour around artificial reefs in the southern waters of Korea (한국 남해안에 시설된 인공어초 주위의 퇴적과 세굴 특성)

  • Kim, Chang-Gil;Suh, Sung-Ho;Oh, Tae-Gun;Kim, Byung-Gyun;Choi, Yong-Suk;Sheehy, Daniel J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.233-233
    • /
    • 2011
  • This study describes the characteristics of accretion and scour around artificial reefs in Korea. The survey for accretion and scour was made at a dice reef set consisting of 137 dice reefs. The volume of a dice reef unit is 8 $m^3$. The reef set was placed on the muddy sand at 21.6 m in November of 1999. Equipment used in the survey includes Side Scan Sonar, Multi Beam Echo Sounder, Sub-Bottom Profiler and water current meter. According to the results, the artificial reefs are heaped up at two to three times (4 m) the height of the dice reef. The maximum current around the artificial reefs was 81.5 cm/sec at the ebb tide and 72.7 cm/sec at the flood tide. Scour around artificial reefs occurs upstream to the flow while accretion is formed at wake zone in the downstream. The height of accretion ranges from 2.4 to 3.0 m. The crest of the accretion is formed at the distance of about 10 m from the edge of the reef. The slope of accretion is formed steeply at the vicinity of the reef which is at right angles to the direction of main current, and grows gently lower with the increased distance from the reef. Scour is continuously caused by upwelling from the reef set and by side currents that flow parallel to side of the accretion. Also, scour takes place on the deposited sediment rather than on the remaining bottom sediments. This means that, once fully formed, the depth of scour gully on both sides to the direction of main current hardly changes.

  • PDF

Distribution, Vegetation Structure and Biomass of Submerged Macrophytes in a Small Agricultural Reservoir, Keumpoong Reservoir, Korea (소형 농업 저수지인 금풍저수지에서 침수식물의 분포, 식생구조 및 생물량)

  • Kim, Ki-Hwan;Jin, Seung-Nam;Cho, Hyung-Jin;Cho, Kang-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.52-61
    • /
    • 2012
  • Distribution, abundance and biomass of submerged macrophytes were assessed using a double-headed rake and an echo-sounder in the Keumpoong Reservoir to investigate the temporal and spatial variations of submerged macrophytes in a small agricultural reservoir located upstream. Slope steepness and water depth in the littoral zone were important controlling factors on flora and vegetation structure of submerged macrophytes. Biodiversity of submerged macrophytes was increased at a gentle slope of the littoral zone. The results of DCA (detrended correspondence analysis) showed that the structure of submerged vegetation depended on the depth of water. Submerged macrophytes were distributed at the maximum water depth of 2.8 m in the Keumpoong Reservoir. The area occupied by the submerged macrophytes was estimated at only 6% of the total reservoir area because of the steep slope of the littoral zone and the large annual water-level fluctuation of 3.5 m. The increase of water level and inflow of turbid water in the rainy season might reduce the biomass of submerged macrophytes in the reservoir. It may be concluded that submerged vegetation in the Keumpoong Reservoir, a small agricultural reservoir located at the upstream, appears to be particularly susceptible to water level fluctuations and slope steepness of the littoral zone.

Surficial Sediment Classification using Backscattered Amplitude Imagery of Multibeam Echo Sounder(300 kHz) (다중빔 음향 탐사시스템(300 kHz)의 후방산란 자료를 이용한 해저면 퇴적상 분류에 관한 연구)

  • Park, Yo-Sup;Lee, Sin-Je;Seo, Won-Jin;Gong, Gee-Soo;Han, Hyuk-Soo;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.747-761
    • /
    • 2008
  • In order to experiment the acoustic remote classification of seabed sediment, we achieved ground-truth data(i.e. video and grab samples, etc.) and developed post-processing for automatic classification procedure on the basis of 300 kHz MultiBeam Echo Sounder(MBES) backscattering data, which was acquired using KONGBERG Simrad EM3000 at Sock-Cho Port, East Sea of South Korea. Sonar signal and its classification performance were identified with geo-referenced video imagery with the aid of GIS (Geographic Information System). The depth range of research site was from 5 m to 22.7 m, and the backscattering amplitude showed from -36dB to -15dB. The mean grain sizes of sediment from equi-distanced sampling site(50 m interval) varied from 2.86$(\phi)$ to 0.88(\phi). To acquire the main feature for the seabed classification from backscattering amplitude of MBES, we evaluated the correlation factors between the backscattering amplitude and properties of sediment samples. The performance of seabed remote classification proposed was evaluated with comparing the correlation of human expert segmentation to automatic algorithm results. The cross-model perception error ratio on automatic classification algorithm shows 8.95% at rocky bottoms, and 2.06% at the area representing low mean grain size.

Studies on Dorsal Aspect Target Strengths of Rock Bream, Oplegnathus Fasciatus and Dusky Spinefoot, Siganus Fuscescens (돌돔과 독가시치의 등방향 반사강도에 관한 연구)

  • 오성우;안장영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • In order to obtain fundamental data for estimation of fisheries resource by echo sounder, we carried out the measuring of dorsal aspect Target strengths for rock bream and dusky spinefoot fishes that were caught much around the Jeju Island and in South Sea of Korea. The appropriate equations share the common form. TS=A+20 log L, where TS is the average dorsal aspect target strength in decibels, L is the fish total length in centimeters, and the coefficient A is determined by a least mean squares regression analysis. For rock bream, the result is TS=-72.97+20 log L and, for dusky spinefoot it is TS=-63.16+20 log L And, we have investigated the bearing range of maximum dorsal aspect target strength for all of rock bream and dusky spinefoot by the echo sounder with transducer of which frequency is 200kHz. They are $-12^\circ$-$-21^\circ$and $-1^\circ$--8 espectively, when the fishes is swimming down to the bottom. The maximum dorsal target strengths are -41.50dB at -18 or rock bream and -30.69dB at $-6^\circ$for dusky spinefoot.

  • PDF

Estimation of Countermeasures and Efficient Use of Volume of Artificial Reefs Deployed in Fishing Grounds (어초어장으로 시설된 사각형어초의 수량 산정 및 유효공용적 평가)

  • Kim, Ho-Sang;Lee, Jeong-Woo;Kim, Jong-Ryeol;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.181-187
    • /
    • 2009
  • To estimate the status and volume of artificial reefs(ARs) deployed at the sea bottom in fishing grounds, this study assessed the initial volume of ARs, the cubic volume of AR groups, and the porosity of each AR using image data collected during a survey using a multi-beam echo sounder(MBES) and a side scan sonar(SSS). These results were compared with data collected during diver surveys and used to develop a new method and prediction formulas for countermeasures, facility volume, and efficient use of volume for deployed ARs(cubic concrete). The field survey results for nine ARs deployed in the Busan Sea region were calculated, and the average value of coefficient k(indicating the efficient use of volume ratio) among ARs was 0.753, and the correlation between coefficient k and year(Yr) of deployment was calculated as k=0.0023Yr+0.725. The relationship between these two factors was poor. In years following the deployment of artificial reefs, coefficient k and year of deployment were not correlated, in spite of the hardening ground due to subsidence and the reduced distance between ARs. Consequently, it is reasonable to suppose that coefficient k was defined by bottom surface conditions and initial deployment conditions.

  • PDF