Surficial Sediment Classification using Backscattered Amplitude Imagery of Multibeam Echo Sounder(300 kHz)

다중빔 음향 탐사시스템(300 kHz)의 후방산란 자료를 이용한 해저면 퇴적상 분류에 관한 연구

  • Published : 2008.12.28

Abstract

In order to experiment the acoustic remote classification of seabed sediment, we achieved ground-truth data(i.e. video and grab samples, etc.) and developed post-processing for automatic classification procedure on the basis of 300 kHz MultiBeam Echo Sounder(MBES) backscattering data, which was acquired using KONGBERG Simrad EM3000 at Sock-Cho Port, East Sea of South Korea. Sonar signal and its classification performance were identified with geo-referenced video imagery with the aid of GIS (Geographic Information System). The depth range of research site was from 5 m to 22.7 m, and the backscattering amplitude showed from -36dB to -15dB. The mean grain sizes of sediment from equi-distanced sampling site(50 m interval) varied from 2.86$(\phi)$ to 0.88(\phi). To acquire the main feature for the seabed classification from backscattering amplitude of MBES, we evaluated the correlation factors between the backscattering amplitude and properties of sediment samples. The performance of seabed remote classification proposed was evaluated with comparing the correlation of human expert segmentation to automatic algorithm results. The cross-model perception error ratio on automatic classification algorithm shows 8.95% at rocky bottoms, and 2.06% at the area representing low mean grain size.

다중빔 음향 탐사 시스템의 후방산란 자료를 대상으로 한 해저면 분류의 가능성을 평가하기 위하여, KONGSBERG SIMRAD EM3000(300kHz) 후방산란 신호를 분석하고 처리하는 소프트웨어를 구현하였다. 강원도 속초항 부근에서 취득한 음압 자료를 이용하여 모자익 영상을 제작하였다. 원격 분류 결과의 검증을 위해 영상 내에서 이질적인 음압 강도로 나타나는 지역에 대하여 잠수사에 의한 직접적인 표층 퇴적물 채취와 비디오 광학 영상을 취득한 후, 후방산란 음압과의 비교를 실시하였다. 연구 대상 지역의 수심은 5m에서 22.7m까지였으며, 모자이크 영상 내의 후방산란 강도 분포는 -15dB에서 -36dB까지 나타났다. 그리고 표층퇴적물 입도 분석 결과, 평균 입도 크기는 최대 $2.86{\phi}$에서 최대 $0.88{\phi}$까지 나타났다. 시료의 입도 분석 자료와 영상의 강도 변화 사이의 상관성을 비교해 본 결과, R값은 0.56으로 나왔다. 입도 분석 자료와 후방산란 음압 자료와의 상관성을 기반으로 구현한 해저면 자동분류 시스템의 인식정도를 정량화하기 위하여, GIS시스템으로 각 대상 자료를 통합하고, 면적비교 기능을 사용하여 평가를 수행하였다. 암반 지역을 사질지역으로, 사질 지역을 암반지역으로 교차 인식하는 오인식율은 약 8.95%로, 평균 입도가 낮은 지역의 인식 면적 차이는 사용자 분류를 기준으로 약 2.06%로 나타났다. 이러한 결과는 평균 입도 변화가 해저면 후방산란에 가장 큰 영향을 미치는 요인임을 지시하고 있다. 따라서 이러한 후방산란 음압을 평가하여 평균 입도 변화를 추적하는 알고리즘을 구현할 수 있었으며, 최종 모자이크 영상을 두 개의 퇴적체로 자동 분류하는 시스템을 구현하게 되었다.

Keywords

References

  1. Beyer, A., Charkraboty, B. and Schenke, H.W. (2007) Seafloor classification of the mound and channel provinces of the Porcupine Seabight: and application of the multibeam angular backscatter data, Int J Earth Sci (Geol Rundsch). v. 96, p. 11-20 https://doi.org/10.1007/s00531-005-0022-1
  2. Chakraborty, B. and Kodagali, V.N. (2004) Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter, Geo-Marine Letters, v. 24, p. 8-13 https://doi.org/10.1007/s00367-003-0153-y
  3. Cho, J.S., Yoon, K.S., Park, S.S., Na, J.Y., Suk, D.W. and Joo, J.Y. (2004) Seafloor Classification Using Fuzzy Logic, J. Acoust. Soc. Kor., 23(4), p. 296-302
  4. Claudio Lo Iacono,, Eulalia Gracia, Susana Diez, Graziella Bozzano, Ximena Moreno, Juanjo Danobeitia and Belen Alonso (2007) Seafloor characterization and backscatter variability of the Almeria Margin(Alboran Sea, SW Mediterranean) based on high-resolution acoustic data, Marine Geology, doi:10.1016/j.margeo.2007.11.004. (In press)
  5. Park, C., Seong, W., Gerstoft, P. and Siderius, M. (2003) Time-domain geoacoustic inversion of high-frequency chirp signal from simple towed system, IEEE J. Oceanic Eng., Vol. 28, p. 468-478 https://doi.org/10.1109/JOE.2003.816684
  6. Cutter, G.R. Jr., Rzhanov, Y. and Mayer, L.A. (2003) Automated segmentation of seafloor bathymetry from multibeam echosounder data using local Fourier histogram texture features. Journal of Experimental Marine Biology and Ecology, v. 285-286, p. 355-370 https://doi.org/10.1016/S0022-0981(02)00537-3
  7. Dietmar R., Muller, R. and Sian Eagles (2007) Mapping Seabed Geology by Ground-Truthed Textural Image/ Neural Network Classification of Acoustic Backscatter Mosaics, Math Geol. v. 39, p. 575-592 https://doi.org/10.1007/s11004-007-9113-9
  8. Folk, R.L. and Ward, W.C. (1957) Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Preol., v. 27, p. 3-26 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  9. Gary Cholwek, John Bonde, Xing Li, Carl Richards and Karen Yin (2000) Processing Roxann sonar data to improve its categorization of lake bed surficial substrates, Marine Geophysical Researches, v. 21, p. 409- 421 https://doi.org/10.1023/A:1026525326823
  10. Hamilton, E.L., Shumway, G., Menard, H.W. and Shipek, C.J. (1956) Acoustic and physical properties of shallow- water sediments off San Diego. J. Acoust. Soc. Am. v. 28, p. 1-15 https://doi.org/10.1121/1.1908210
  11. Hughes Clarke, J.E., Mayer, L.A. and Wells, D. (1996) Shallow-water imaging multibeam sonars: A new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Marine Geophysical Researches, Vol. 18, p. 607-629 https://doi.org/10.1007/BF00313877
  12. Ingram, R.L. (1971) Sieve analysis. In : Procedures in sedimentary Petrology, editied by Carver, R.E. Willey- Inter Science, New York, p. 49-67
  13. Intelmann, S.S., Cutter, G.R. and Beaudoin, J.D. (2007) Automated, objective texture segementation of multibeam echosounder data - Seafloor survey and substrate maps from James Island to Ozette Lake, Washington Outer Coast. Marine Sanctuaries Conservation Series MSD-07-05. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Sanctuary Program, Silver Spring, MD. 31p
  14. Roberts, J.M., Brown, C.J., Long, D.C. and Bates, R. (2005) Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats, Coral Reef, v. 24, p. 654-669 https://doi.org/10.1007/s00338-005-0049-6
  15. Joe Breman, Dawn Wright, and Patrick N. Halpin (2002) The Inception of the ArcGIS Marine Data Model, Marine Geography, GIS for the Oceans and Seas, ESRI press, p. 3-10
  16. 06Kong, G.S., Kim, S.P., Park, Y.S., Min, G.H., Kim, J.U. and Park, S.C. (2006) Correlation of Simrad EM950 (95 kHz) Multibeam Backscatter Strength with Surficial Sediment Properties in the Sand Ridge of the Eastern Yellow Sea, Econ. Environ. Geol., v. 39, p. 719-738
  17. Kim, G.Y., Kim, D.C., Kim, Y.E., Lee, K.H., Park, S.C., Park, J.W. and Seo, Y.K. (2002) Remote Seabed Classification Based on the Characteristics of the Acoustic Response of Echo Sounder:Preliminary Result of the Suyoung Bay, Busan, J. Korean Fish. Soc., v. 35, p. 273-282
  18. KORDI (1991) A study of the Acoustic Characteristics of the Sediments of the Korean Seas(III), BSPG00075- 229-5
  19. La, H.S., Yoon, K.S. and Na, J.Y. (2005) Characteristics of High Frequency Backscattering Strength by Zostera Marina(Seagrass) Bed, J. Acoust. Soc. Kor., v. 24, p. 97-102
  20. Lee, J.H., Yoon, K.S., La, H.S. and Na, J.Y. (2004) Distribution of Seagrass(Zostera marina) Beds and High Frequency Backscattering Characteristics by Photosynthesis, J. Acoust. Soc. Kor., v. 23, p. 562-569
  21. L.J. Hamilton (2005) A bibliography of acoustic seabed classification, Cooperative Research Centre for Coastal Zone, Estuary & Waterway Management, Technical Report No.27
  22. Luciano Fonsenca and Larry Mayer (2007) Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data, Mar Geophys Res., v. 28, p. 119-126 https://doi.org/10.1007/s11001-007-9019-4
  23. Medialdea, T., Somoza L., Leon R., M. Farran, Ercill G., Maestro A., Casas D.,. Llave E., Hernandez-Molina F.J., Fernandez-Pug M.C., and Alonso B. (2007) Multibeam backscatter as a tool for sea-floor characterization and identification of oil spills in the Galicia Bank, Mar. Geol, v. 249, p. 93-107 https://doi.org/10.1016/j.margeo.2007.09.007
  24. Oliveira Jr. A. M. and Hughes Clarke, J. E. (2007) Recovering wide angular sector multibeam backscatter to facilitate seafloor classification, United States Hydrographic Conference Norfolk, VA, May