• Title/Summary/Keyword: sound vibration

Search Result 2,252, Processing Time 0.027 seconds

A Study on Vibration Analysis for the Slab of Apartment Building (아파트 슬래브의 진동평가에 관한 연구)

  • Park Kang-Geun;Kim Yong-Tae;Choi Young-Wha
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.333-340
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in apartment building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of apartment building.

  • PDF

Active Noise Control of Ducts Using the FXLMS Algorithms (FXLMS 알고리듬을 이용한 덕트의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.489-496
    • /
    • 2008
  • This paper investigates active noise control of ducts using Filtered-x Least Mean Square (FXLMS) algorithms to reduce noise transmission. Single channel FXLMS (MFXLSM) and multiple channel FXLMS (MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level (SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level. can be reduced by the active noise control using MFXLMS.

  • PDF

Vibration and Noise Characteristics of Spall Blasting Method (이완식 발파공법의 진동과 소음 특성)

  • Yang Hyung-Sik;Kim Nam-Soo;Kim Won-Beom;Choi Mi-Jin
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • Ground vibration, sound pressure and fragmentation size were measured at the construction site using the spall blasting method(SBM). nev were analyzed and compared to those or suggested method by the minister of construction and transportation(MOST). Vibration and sound pressure by SBM were slightly smaller than MOST method but fragmentation size were larger.

Optimal design of Sound Enclosure of the BOP module(300kW MCFC) (MCFC 모듈형 BOP(300kW급) 방음 Enclosure 최적설계)

  • Oh, Jin-Woo;Lee, Jang-Hyun;Lee, Kyu-Houng;Lee, Sang-Hun;Oh, Yong-Min;Kim, Sun-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.122-127
    • /
    • 2011
  • Recently eco friendly energy is the most interested field and has been research actively. MCFC is a representative technology of eco friendly energy. Eco friendly energy shouldn't cause environmental problems like noise and vibration because that is the technology to solve environmental problems. The major noise and vibration source of MCFC is blowers. this project designed sound enclosure and isolator as the best way for blowers.

  • PDF

Estimation of flanking transmission due to difference between laboratory and field test (실험실 및 현장실험을 통한 벽체의 우회전달음 평가에 관한 연구)

  • Chung, J.Y.;Lee, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1383-1386
    • /
    • 2006
  • This study examines the difference of airborne sound isolation between laboratory and field test. The airborne sound isolation between adjacent dwellings in multi-family buildings is often much less than would be expected from the rated sound reduction index of the nominally-separating wall, due to structure-borne transmission of vibration at the junctions of wall. A variety of construction modifications to control such transmission have also been evaluated. This study presents a factor of the difference for flanking involving joint of wall, and shows the effect of some practical modifications that control the key flanking paths

  • PDF

Active Noise Control of Ducts Using the FXLMS Algorithms (FXLMS 알고리듬을 이용한 덕트의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Jeong, Wei-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • This paper investigates active noise control of ducts using filtered-x least mean square(FXLMS) algorithms to reduce noise transmission. Single channel FXLMS(SFXLSM) and multiple channel FXLMS(MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level(SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then be obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level, can be reduced by the active noise control using MFXLMS.

A Study on the Condition Monitoring for Rolling Element Bearing using Higher Order Statistical Analysis of Sound-Vibration Signal (음향-진동 신호의 고차 통계해석을 이용한 회전요소 베어링의 상황감시에 관한 연구)

  • 이해철;이준서;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.405-413
    • /
    • 2000
  • This paper present study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skew are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

Noise and Vibration Characteristics of Construction structures in Standard Laboratory (표준실험동의 구조별 소음 진동 특성)

  • Jeong, Young;Yoo, Seung-Yub;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.390-393
    • /
    • 2005
  • In this study, examined heavy-weight floor impact sound to rahmen structure(steel reinforced concrete structure) and bearing-wall structure(box frame type structure) that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results of ANSYS modeling of structures was predicted that the nature natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Rahmen structures compares with bearing-wall structure, nature frequency was predicted low. Measurement results of natural frequency and acceleration level for structures at a standard laboratory, tendency department such as ANSYS modeling appeared. Rahmen structures appeared that reduction effect is less in Acceleration level and heavy impact sound transmission level comparing with bearing-wall structure.

  • PDF

Development of Noise Analysis Software-'NASPFA' in Medium-to-high Frequency Ranges using Power Flow Boundary Element Method (파워흐름경계요소법을 이용한 중고주파 소음해석 소프트웨어 'NASPFA' 개발)

  • Lee, Ho-Won;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.949-953
    • /
    • 2004
  • In this paper, Power Flow Boundary Element Method(PFBEM) is studied as the numerical method for the vibration and sound predictions of complex structures in medium-to-high frequency ranges. NASPFA, the sound analysis software based on PFBEM, is developed and is used for the vibro-acoustic analysis. And also the developed software is used for the prediction of interior and exterior sound fields of vibrating structures and for the analysis of the multi-domain problems. To verify the accuracy, NASPFA is applied to the prediction of the energy distribution in the simple structures, and its results are compared with exact PFA solutions. And various practical vehicle systems are modeled and the distributions of the acoustical energy density are successfully predicted.

  • PDF

Study on the Structure-borne Sound Transmission of a Machine through Rubber Mounts (고무마운트를 통한 장비의 고체음 전달에 관한 연구)

  • Kim, Bong-Ki;Kim, Jae-Seung;Kim, Hyun-Sil;Kang, Hyun-Joo;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.655-660
    • /
    • 2000
  • Machines on board a ship are mounted on decks and transmit its structure-borne sound to the deck through resilient mounts. To predict the ship noise generated by the structure-borne sound of the machine, It is necessary to estimate the vibration level of the base structure. In this paper, a simple dynamic model is considered for vibration isolation systems consisting of a source, an isolator, and a base structure. The high frequency mobilities of the simple base structure are reviewed and wave effects in the mount are discussed in relation to isolation performance.

  • PDF