• Title/Summary/Keyword: somatic chromosome

Search Result 137, Processing Time 0.046 seconds

Haploidy of somatic cells in mouse oocyte using somatic cell nuclear transfer

  • Yeonmi Lee;Eunju Kang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.213-217
    • /
    • 2022
  • Haploidization in somatic cells is the process of reducing the diploid somatic chromosomes to haploid. Several studies have attempted somatic haploidization using oocytes in mice and humans. Some researchers showed partial somatic haploidization, but none observed embryo development. Our study attempted somatic haploidization using the modified somatic nuclear transfer (SCNT) protocol with various combinations of chemicals or proteins in mice. This study induced the proper segregation of somatic homologous chromosomes and full embryo development in vitro. Furthermore, somatic haploid embryos established embryonic stem cells and produced live births. The current review summarizes this recent study on the success of somatic haploidization and provides an overview of other related studies on somatic haploidization.

A cytotaxonomic study of Galium (Rubiaceae) in Korea (한국산 갈퀴덩굴속(Galium L.)의 세포분류학적 연구)

  • Jeong, Keum Seon;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this study, the somatic chromosome of 14 taxa of Korean Galium L. were investigated. Among them were a few taxa for which the somatic chromosome number was determined for the first time. The somatic chromosome numbers of Korean Galium L. were 2n = 22, 24, 44, 48, 66, 72, 77, 88 and so basic chromosome numbers were x = 11 or 12. Those taxa having the basic chromosome number x = 11 showed polyploidy, including diploid, tetraploid, heptaploid, and octoploid. Tetraploid and hexaploid can be observed in those taxa with the basic number x = 12. The eleven taxa reported 11 for the first time are G. spurium var. echinospermon (Wallr.) Hayek (2n = 44), G. gracilens (A. Gray) Makino (2n = 22), G. pogonanthum Franch. & Sav. (2n = 22, 44), G. trachyspermum A. Gray (2n = 22, 44), G. japonicum (Maxim.) Makino & Nakai (2n = 77), G. trifloriforme Kom. (2n = 44), G. dahuricum Turcz. var. dahuricum (2n = 48, 72), G. dahuricum var. tokyoense (Makino) Cufod. (2n = 22), G. kinuta Nakai & Hara (2n=66), G. verum var. trachycarpum for. nikkoense (Nakai) Ohwi (2n = 44), G. verum var. asiaticum for. pusillum (Nakai) M. Park (2n = 44). The taxa with the same chromosome numbers as previously reported ones were G. boreale L. (2n=22) and G. verum var. asiaticum Nakai for. asiaticum (2n = 44). The chromosome number of G. trifidum L. (2n = 22) was different from the previous report. Two infraspecific taxa of G. dahuricum showed differences in their basic chromosome numbers (x = 11 for G. dahuricum Turcz. var. dahuricum and x = 12 for var. tokyoense (Makino) Cufod. The somatic chromosome number for G. dahuricum Turcz. var. dahuricum was found to be 2n = 48 (tetraploid) or 72 (hexaploid), while that of G. dahuricum var. tokyoense (Makino) Cufod. was found to be 2n = 22 (diploid). Therefore, basic chromosome numbers for members of the genus Galium can be used as valuable characters in delimiting infrageneric sections and investigating interspecific relationships.

Chromosome number of four Korean species of Leontopodium(Asteraceae) (한국산 솜다리속(국화과) 4종의 염색체수)

  • Lee, Dong-Hyuk;Chung, Gyu Young;Choi, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.3
    • /
    • pp.153-156
    • /
    • 2010
  • The somatic chromosome number of four Korean species of Leontopodium were investigated. The chromosome number of L. leiolepis (2n = 24) is reported here as for the first time. The chromosome number of L. japonicum (2n = 28) is not varied among the 3 populations on the Korean Peninsula, but that condition is different from the previous reports for Korea (2n = 26) and Japan (2n = 21, 26). L. hallaisanense and L. japonicum, both of which are in sect. Nobilia and similar to each other in gross morphology, have the same chromosome number of 2n = 28. On the other hand the chromosome number of Korean L. leontopodioides (2n = 24) is different from that in Russian reports (2n = 26). The chromosome numbers of all Korean species of the genus Leontopodium could be inferred as tetraploid or aneuploid.

Essential Role of brc-2 in Chromosome Integrity of Germ Cells in C. elegans

  • Ko, Eunkyong;Lee, Junho;Lee, Hyunsook
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.590-594
    • /
    • 2008
  • brc-2, an ortholog of BRCA2 in Caenorhabditis elegans, is essential in the maintenance of genetic integrity. In C. elegans, cellular location correlates with meiotic progression, and transgene-induced cosuppression is observed in the germ line but not in somatic cells. We used these unique features to dissect the role of brc-2 in the germ line from that in somatic cells. In situ hybridization of wild type animals revealed that brc-2 gene expression was higher in oocytes than in other germline cells, and was barely detectable in mitotic cells. In contrast, germ cells containing multicopies of the brc-2 transgene showed no significant in situ hybridization signal at any oogenesis stage, confirming that brc-2 expression was functionally cosuppressed in the transgenic germ line. RAD-51 foci formation in response to DNA damage was abrogated in brc-2-cosuppressed germ cells, whereas wild-type germ cells showed strong RAD-51 foci formation. These germ cells exhibited massive chromosome fragmentation and decompaction instead of six bivalent chromosomes in diakinesis. Accordingly, lethality was observed after the early stage of germline development. These results suggest that brc-2 plays essential roles in chromosome integrity in early prophase, and therefore is crucial in meiotic progression and embryonic survival.

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

The Study on Chromosome Number of Morus bombycis Koidz., Morus Mongolica C.K.Schn.and Morus tiliaefolia Makino Growing Wild in the Korea Peninsula (한반도에 자생하는 산뽕나무(Morus bombycis Koidz.), 몽고뽕나무(Morus mongolica C.K. Schn.) 및 돌뽕나무(Morus tiliaefolia Makino)의 염색체수)

  • 박광준
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.1
    • /
    • pp.53-54
    • /
    • 2001
  • The chromosome number of Morus bombycis Koidz. and Morus monogolica C.K.Schn. growing wild in the Korea Peninsula is diploid (2n=28) and that of Morus tiliaefolia Makino is hecxaploid (2n=84). The somatic cell division of each species is nomal.

  • PDF

Nuclear and Microtubule Reorganization in Cattle Nuclear Transfered Embryos

  • Shin, Mi-Ra;Park, Sang-Wook;Cui, Xiang-Shun;Shim, Ho-Sup;Kim, Nam-Hyung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.18-18
    • /
    • 2001
  • Despite of importance of integrated events of nucleus and microtubule remodeling in nuclear transferred embryos with somatic cells, little information is available on this subject. In this study we configured chromatin and microtubule organization following somatic cell nuclear transfer in pre- and non-activated bovine oocytes in order to clearify nuclear remodeling process and to demonstrate centrosome inheritance during nuclear transfer. The cumulus-oocyte complexes were collected from slaughterhouse and were matured in vitro for 20 h in TCM 199 supplemented hormone. Matured bovine oocytes were enucleated by aspirating the frist polar body and metaphase chromatin using a beveled pipette. Bovine fibroblast cells were fused into enucleated oocyte by electrical stimulation. Reconstructed oocytes were activated with ionomycine and 6-dimethylaminopurin, and then cultured in CRlaa medium. The organization of nuclear and microtubules were observed using laser-scanning confocal microscopy. At 1 hour after fusion, microtubule aster was seen near the transferred nucleus in most oocytes regardless activation condition. While most of fibroblast nuclei remodeled to premature chromosome condensation (PCC) and to the two masses of chromosome in non-activated oocytes, a few number of fibloblasts went to PCC and multiple pronuclear like structures in activated oocytes. Microtubular spindle was seen around condensed chromosome. Gamma-tubulin was detected in the vicinity of condensed chromosome, suggesting this is a transient spindle. The spindle seperated nucleus into two masses of chromatin which developed to the pronuclear like structures. Two pronuclear like structures were than apposed by microtubular aster and formed one syngamy like nuclear structure at 15 h following nuclear transfer. At 17 to 18 h after fusion, two centrosomes were seen near the nucleus, which nucleates micrtubules for two cell cleavage. While 31% of reconstructed oocytes in non-activated condition developed to morulae and blastocysts, a few reconstructed oocytes in pre-activated condition developed to the blastocyst. These results suggested introduction of foreign centrosome during nuclear transfer, which appeared to give an important role for somatic cell nuclear reprogramming.

  • PDF