Essential Role of brc-2 in Chromosome Integrity of Germ Cells in C. elegans

  • Ko, Eunkyong (Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Lee, Junho (Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Lee, Hyunsook (Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
  • Received : 2008.07.31
  • Accepted : 2008.09.08
  • Published : 2008.12.31

Abstract

brc-2, an ortholog of BRCA2 in Caenorhabditis elegans, is essential in the maintenance of genetic integrity. In C. elegans, cellular location correlates with meiotic progression, and transgene-induced cosuppression is observed in the germ line but not in somatic cells. We used these unique features to dissect the role of brc-2 in the germ line from that in somatic cells. In situ hybridization of wild type animals revealed that brc-2 gene expression was higher in oocytes than in other germline cells, and was barely detectable in mitotic cells. In contrast, germ cells containing multicopies of the brc-2 transgene showed no significant in situ hybridization signal at any oogenesis stage, confirming that brc-2 expression was functionally cosuppressed in the transgenic germ line. RAD-51 foci formation in response to DNA damage was abrogated in brc-2-cosuppressed germ cells, whereas wild-type germ cells showed strong RAD-51 foci formation. These germ cells exhibited massive chromosome fragmentation and decompaction instead of six bivalent chromosomes in diakinesis. Accordingly, lethality was observed after the early stage of germline development. These results suggest that brc-2 plays essential roles in chromosome integrity in early prophase, and therefore is crucial in meiotic progression and embryonic survival.

Keywords

Acknowledgement

Supported by : Korean Ministry of Education

References

  1. Adamo, A, Montemauri, P., Silva, N., Ward, J.D., Boulton, S.J., and La Volpe, A (2008). BRC-1 acts in the inter-sister pathway of meiotic double-strand break repair. EMBO Rep. 9, 287-292 https://doi.org/10.1038/sj.embor.7401167
  2. Alpi, A, Pasierbek, P., Gartner, A, and Loidl, J. (2003). Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma. 112, 6-16 https://doi.org/10.1007/s00412-003-0237-5
  3. Dernburg, AF., Zalevsky, J., Colaiacovo, M.P., and Villeneuve, AM. (2000). Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev. 14,1578-1583
  4. Jedrusik, MA, and Schulze, E. (2001). A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development 128, 1069-1080
  5. Joeng, K.S., Song, E.J., Lee, K.J. and Lee, J. (2004). Long lifespan in worms with long telomeric DNA Nat. Genet. 36, 607-611 https://doi.org/10.1038/ng1356
  6. Li, Y., Kelly, W.G., Logsdon, J.M., Jr., Schurko, AM., Harfe, B.D., Hill-Harte, K.L., and Kahn, RA (2004). Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEBJ. 18,1834-1850 https://doi.org/10.1096/fj.04-2273com
  7. Martin, J.S., Winkelmann, N., Petalcorin, M.I., Mcllwraith, M.J., and Boulton, S.J. (2005). RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol. Cell. BioI. 25, 3127-3139 https://doi.org/10.1128/MCB.25.8.3127-3139.2005
  8. Min, J., Park, P.G., Ko, E., Choi, E., and Lee, H. (2007). Identification of Rad51 regulation by BRCA2 using Caenorhabditis elegans BRCA2 and bimolecular fluorescence complementation analysis. Biochem. Biophys. Res. Commun. 362, 958-964 https://doi.org/10.1016/j.bbrc.2007.08.083
  9. Patel, K.J., Yu, V.P., Lee, H., Corcoran, A, Thistlethwaite, F.C., Evans, M.J., Colledge, W.H., Friedman, L.S., Ponder, BA, and Venkitaraman, AR. (1998). Involvement of Brca2 in DNA repair. Mol. Cell 1,347-357 https://doi.org/10.1016/S1097-2765(00)80035-0
  10. Pellegrini, L., and Venkitaraman, A (2004). Emerging functions of BRCA2 in DNA recombination. Trends Biochem. Sci. 29, 310-316 https://doi.org/10.1016/j.tibs.2004.04.009
  11. Pellegrini, L., Yu, D.S., Lo, T., Anand, S., Lee, M., Blundell, T.L., and Venkitaraman, AR. (2002). Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287-293 https://doi.org/10.1038/nature01230
  12. Petalcorin, M.I., Sandall, J., Wigley, D. B., and Boulton, S.J. (2006). CeBRC-2 stimulates D-Ioop formation by RAD-51 and promotes DNA single-strand annealing. J. Mol. BioI. 361, 231-242 https://doi.org/10.1016/j.jmb.2006.06.020
  13. Petalcorin, M.I., Galkin, V.E., Yu, X., Egelman, E.H., and Boulton, S.J. (2007). Stabilization of RAD-51-DNA filaments via an interaction domain in Caenorhabditis elegans BRCA2. Proc. Natl. Acad. Sci. USA 104,8299-8304
  14. Rinaldo, C., Bazzicalupo, P., Ederle, S., Hilliard, M., and La Volpe, A (2002). Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics 160,471-479
  15. Shivji, MK, and Venkitaraman, AR. (2004). DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair. 3, 835-843 https://doi.org/10.1016/j.dnarep.2004.03.008
  16. Takanami, T., Mori, A, Takahashi, H., Horiuchi, S., and Higashitani, A (2003). Caenorhabditis elegans Ce-rdh-1/rad-51 functions after double-strand break formation of meiotic recombination. Chromosome Res. 11,125-135 https://doi.org/10.1023/A:1022863814686
  17. Venkitaraman, AR. (2001). Chromosome stability, DNA recombination and the BRCA2 tumour suppressor. Curr. Opin. Cell BioI. 13, 338-343 https://doi.org/10.1016/S0955-0674(00)00217-9
  18. Venkitaraman, AR. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108,171-182 https://doi.org/10.1016/S0092-8674(02)00615-3
  19. West, S.C. (2003). Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell BioI. 4, 435-445 https://doi.org/10.1038/nrm1127
  20. Wicky, C., Alpi, A, Passannante, M., Rose, A, Gartner, A, and Muller, F. (2004). Multiple genetic pathways involving the Caenorhabditis elegans Bloom's syndrome genes him-6, rad-51, and top-3 are needed to maintain genome stability in the germ line. Mol. Cell. BioI. 24, 5016-5027 https://doi.org/10.1128/MCB.24.11.5016-5027.2004
  21. Wu, L. (2008). Wrestling off RAD51: a novel role for RecQ helicases. Bioessays 30, 291-295 https://doi.org/10.1002/bies.20735
  22. Yang, H., Jeffrey, p.o., Miller, J., Kinnucan, E., Sun, Y., Thoma, N.H., Zheng, N., Chen, P.L., Lee, W.H., and Pavletich, N.P. (2002). BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297,1837-1848 https://doi.org/10.1126/science.297.5588.1837
  23. Yang, H., Li, Q., Fan, J., Holloman, WK, and Pavletich, N.P. (2005). The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433, 653-657 https://doi.org/10.1038/nature03234
  24. Yu, V.P., Koehler, M., Steinlein, C., Schmid, M., Hanakahi, L.A, van Gool, AJ., West, S.C., and Venkitaraman, AR. (2000). Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 14,1400-1406