• 제목/요약/키워드: solvent ratio

검색결과 853건 처리시간 0.026초

염산과 아세톤의 혼합용매를 이용한 Dowex21K XLT 수지에 흡착된 금과 구리-시안 착화합물의 탈착 특성 (Desorption Characteristics for Previously Adsorbed Gold and Copper-Cyanide Complexes onto Dowex21K XLT Resin Using Mixed Solvent with HCl and Acetone)

  • 전충
    • 청정기술
    • /
    • 제19권4호
    • /
    • pp.487-491
    • /
    • 2013
  • Dowex21K XLT 수지에 흡착된 금과 구리-시안 착화합물을 효과적으로 탈착시키기 위하여 쌍극성의 반 양성자성 용매의 일종인 아세톤을 염산과 섞은 혼합용매를 탈착제로 이용하였다. 염산과 아세톤의 혼합비율(부피비)이 7:3일 때 금-시안 착화합물의 탈착율은 약 94%로서 가장 높았으나 아세톤의 비율이 증가할수록 금-시안 착화합물의 탈착율은 감소하였다. 구리-시안 착화합물의 경우는 염산의 비율이 아세톤의 비율보다 상대적으로 높았을 때 거의 대부분을 탈착시켰으나 아세톤의 비율이 증가할수록 탈착율은 감소하였다. 또한, 0.6 M의 염산을 사용하였을 때(염산과 아세톤의 혼합비율은 7:3으로 고정) 금과 구리-시안 착화합물의 탈착율은 각각 94%와 100%였으며 더 높은 염산 농도를 사용하여도 금-시안 착화합물의 탈착율은 증가하지 않았다. 그리고 고체와 액체의 비(ratio of solid and liquid)가 1.0보다 작을 때는 금과 구리-시안 착화합물 모두 100%의 탈착율을 보여주었으나 1.0보다 클 때에는 금-시안 착화합물의 탈착율이 약 20~29%로서 아주 낮았다. 또한, 금과 구리-시안 착화합물에 대한 대부분의 탈착공정은 120분 내에 이루어졌다.

양파껍질로부터 Flavonoid 물질의 추출조건 최적화 (Optimal Extraction Conditions of Flavonoids from Onion Peels via Response Surface Methodology)

  • 전선영;백정화;정은정;차용준
    • 한국식품영양과학회지
    • /
    • 제41권5호
    • /
    • pp.695-699
    • /
    • 2012
  • 본 연구에서는 양파가공부산물인 양파껍질로부터 반응표면분석법을 이용하여 유효성분인 flavonoid 물질의 최적 추출조건을 설정하고자 하였다. 양파껍질의 일반성분은 수분 4.68%, 회분 6.67%, 조단백질 및 조지방이 5.03%, 0.71%이었고, 무기질은 Ca이 20.07 g/kg으로 가장 많은 함량을 차지하였고 K이 5.54 g/kg, Mg 2.17 g/kg의 순으로 함량이 많았다. 중심합성계획법에 의한 flavonoid 물질의 최적 추출조건은 다중회귀분석 및 능선분석 결과, 결정계수는 0.772이었으며, 적합결여검증(p>0.05)에서는 0.278, 전체적인 모형에서 유의성(p<0.05)을 보여 반응모형이 적합한 것으로 판단되었다. 따라서 최대점을 만족하는 각 변수의 조건은 추출용매의 농도는 70%, 추출온도 $40^{\circ}C$, 추출용매의 pH 5.3, 원료에 대한 추출용매의 비율은 1:63(w/v)이었다.

고비점 용제와 산 촉매에 의한 목질 바이오매스의 탈리그닌 (Delignification of Lignocellulosic Biomass with High-Boiling Point Solvent and Acidic Catalyst)

  • 김강재;정진동;정수은;홍성범;엄태진
    • 펄프종이기술
    • /
    • 제48권1호
    • /
    • pp.119-126
    • /
    • 2016
  • In this study, we separated the lignin from the wood by using the high boiling point solvent for developing more environmental friendly pulping method. High boiling point solvents as Ethers, glycols and ketones were used to remove the lignin in the pine wood meals. The Yield and lignin content of residual wood meals was reduced according to the input of the catalyst. Me-C, E-Ca, TEG and MIBK had the best delignification rate of 9 kinds of high-boiling point solvents. At the hydrolysis ratio of the selected solvents, The TEG was highest remain ratio of carbohydrates and the E-Ca was lowest remain ratio of lignin. And the Me-C was most excellent lignin hydrolysis ratio at the low catalyst. The selectivity of delignification of Me-C, E-Ca, TEG and MIBK solvents were 49.6, 49.9, 53.8 and 53.1%, respectively, and its values were similar to those of the commercial Kraft Pulp.

유기 용매 혼합비에 따른 고체산화물 연료전지 전해질 지지체용 세라믹 그린 시트성형 및 소결 특성 (Ceramic Green Sheet and Sintering Properties on Solvent Mixture Rate of Electrolyte for Solid Oxide Fuel Cells Fabrication)

  • 문봉화;이경민;임경태;이충환;이헌용;윤중락
    • 한국전기전자재료학회논문지
    • /
    • 제25권6호
    • /
    • pp.426-430
    • /
    • 2012
  • The properties of green sheet were investigated in order to understanding an effects of organic solvent mixture ratio for solid oxide fuel cells fabrication. The purpose of this work is to optimize the slurry condition using the design of experiment to improve green sheet properties. The elongation increased with increasing amount of binder and solvent. With increasing amount of solvent, the air permeability increased but the tensile strength decreased. The best properties of the green sheet appeared amount of the binder 17 wt%, solvent 35 wt% and powder 48 wt%. The optimum condition of green and sintered density for solid oxide fuel cells fabrication was obtained in the sample pressured at 800 $kgf/cm^2$.

Friction of a Brownian Particle in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.959-964
    • /
    • 2010
  • In this work, equilibrium molecular dynamics (MD) simulations in a microcanonical ensemble are performed to evaluate the friction coefficient of a Brownian particle (BP) in a Lennard-Jones (LJ) solvent. The friction coefficients are determined from the time dependent friction coefficients and the momentum autocorrelation functions of the BP with its infinite mass at various ratios of LJ size parameters of the BP and solvent, ${\sigma}_B/{\sigma}_s$. The determination of the friction coefficients from the decay rates of the momentum autocorrelation functions and from the slopes of the time dependent friction coefficients is difficult due to the fast decay rates of the correlation functions in the momentum-conserved MD simulation and due to the scaling of the slope as 1/N (N: the number of the solvent particle), respectively. On the other hand, the friction coefficient can be determined correctly from the time dependent friction coefficient by measuring the extrapolation of its long time decay to t=0 and also from the decay rate of the momentum autocorrelation function, which is obtained by time integration of the time dependent friction coefficient. It is found that while the friction coefficient increases quadratically with the ratio of ${\sigma}_B/{\sigma}_s$ for all ${\sigma}_B$, for a given ${\sigma}_s$ the friction coefficient increases linearly with ${\sigma}_B$.

해양생물 Botryococcus braunii에서 유래한 바이오연료의 고급생산기술: 전처리 용매추출법 (Higher Production of Biolipids from Botryococcus braunii using Pre-treated Solvent Extraction Methods)

  • 권성현;조대철
    • 한국환경과학회지
    • /
    • 제28권11호
    • /
    • pp.927-933
    • /
    • 2019
  • A lipid-enriched strain of Botryococcus braunii (UTEX 572) was cultivated in a semi-batch aeration tank to enhance biomass as well as to develop intracellular lipids and fatty acids. A 30 day period of incubation produced 1.39 g/L of biomass and 0.31 g/L of total lipids in the biomass. The grown biomass was pre-treated using several methods to extract the total lipid content efficiently: ultrasonication was found to yield the highest percentage of lipids-namely 19.8% per biomass. Direct heating of biomass in an autoclave also showed better performance than when using only conventional solvent extraction. To enhance the biomass harvest and lipid extraction efficiency, coagulation and flocculation steps were added to the extraction process. It is noteworthy that not only the solvent type but also the solvent/biomass ratio greatly affected efficiency. In addition, the moisture content of the harvested(wet) biomass affected the efficiency significantly. This study elucidated the need for future research on optimizing this extraction process.

Optimization of biodiesel production via methyl acetate reaction from cerbera odollam

  • Dhillon, Sandip Singh;Tan, Kok Tat
    • Advances in Energy Research
    • /
    • 제4권4호
    • /
    • pp.325-337
    • /
    • 2016
  • Cerbera Odollam (sea mango) is a proven promising feedstock for the production of biodiesel due to its high oil content. Fatty acid methyl esters (FAME) were produced as the final reaction product in the transesterification reflux condensation reaction of sea mango oil and methyl acetate (MA). Potassium methoxide was used as catalyst to study its reacting potential as a homogeneous base catalyst. The initial part of this project studied the optimum conditions to extract crude sea mango oil. It was found that the content of sea mango sea mango oil was 55%. This optimum amount was obtained by using 18 g of grinded sea mango seeds in 250 ml hexane. The extraction was carried out for 24 hours using solvent extraction method. Response surface methodology (RSM) was employed to determine the optimum conditions of the reaction. The three manipulated variables in this reaction were the reaction time, oil to solvent molar ratio, and catalyst wt%. The optimum condition for this reaction determined was 5 hours reaction time, 0.28 wt% of catalyst and 1:35 mol/mol of oil: solvent molar ratio. A series of test were conducted on the final FAME product of this study, namely the FTIR test, GC-FID, calorimeter bomb and viscometer test.

Organic Solvent-Tolerant Esterase from Sphingomonas glacialis Based on Amino Acid Composition Analysis: Cloning and Characterization of EstSP2

  • Dachuri, VinayKumar;Lee, ChangWoo;Jang, Sei-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1502-1510
    • /
    • 2018
  • Organic solvent-tolerant (OST) enzymes are widely applied in various industries for their activity and stability in organic solvents, for their higher substrate solubility, and for their greater stero-selectivity. However, the criteria for identifying OST enzymes largely remain undefined. In this study, we compared the amino acid composition of 19 OST esterases with that of 19 non OST esterases. OST esterases have increased the ratio of Ala and Arg residues and decreased the ratio of Asn, Ile, Tyr, Lys, and Phe residues. Based on our amino acid composition analysis, we cloned a carboxylesterase (EstSP2) from a psychrophilic bacterium, Sphingomonas glacialis PAMC 26605, and characterized its recombinant protein. EstSP2 is a substrate specific to p-nitrophenyl acetate and hydrolyzed aspirin, with optimal activity at $40^{\circ}C$; at $4^{\circ}C$, the activity is approximately 50% of its maximum. As expected, EstSP2 showed tolerance in up to 40% concentration of polar organic solvents, including dimethyl sulfoxide, methanol, and ethanol. The results of this study suggest that selecting OST esterases based on their amino acid composition could be a novel approach to identifying OST esterases produced from bacterial genomes.

사상자 미백성분 Torilin의 추출조건 최적화 (Optimization of Extraction Conditions of Torilin, a Melanogenesis Inhibitor from Torilis japonica Fruits)

  • 조양희;안종훈;송다혜;황방연;이미경
    • 생약학회지
    • /
    • 제49권1호
    • /
    • pp.65-69
    • /
    • 2018
  • Torilin is a major sesquiterpene of Torilis japonica (Umbelliferae) fruits and known to be a melanogenesis inhibitor. Extraction conditions are important factor for the efficient preparation to save cost and time in economic aspects. For this reason, this study was conducted to optimize the extraction condition for maximal yield of torilin. For optimization, extraction factors such as extraction solvent, extraction temperature and sample/solvent ratio were tested and optimized for maximum yield of torilin using response surface methodology with Box-Behnken design (BBD). The optimal condition was obtained as a EtOAc concentration in MeOH of 31.8%, an extraction temperature at $30.3^{\circ}C$ and a sample/solvent ratio, 1000 mg/2 ml. The torilin yield under optimal conditions was found to be 9.9 mg/g dried samples, which were well-matched with the predicted value of 10.4 mg/g dried samples. These results will provide useful information about optimized extraction conditions for the development of torilin as cosmetic therapeutics to reduce skin hyperpigmentation.

Optimization of an extraction method for the simultaneous quantification of six active compounds in the aril part of Orostachys japonicus using HPLC-UV

  • Gao, Dan;Kim, Jin Hyeok;Cho, Chong Woon;Yang, Seo Young;Kim, Young Ho;Kim, Hyung Min;Kang, Jong Seong
    • 분석과학
    • /
    • 제34권4호
    • /
    • pp.153-159
    • /
    • 2021
  • In this study, we describe the development of a new high-performance liquid chromatography (HPLC) method for the simultaneous analysis of six bioactive compounds (including gallic acid, epicatechin 3-gallate, quercitrin, afzelin, quercetin, and kaempferol) from Orostachys japonicus. The extraction method was investigated and optimization of the extraction time (min), solvent composition (%), and solvent to material ratio were conducted. As a result, 30 min extraction with 50% methanol and 40:1 mL/g of solvent: material ratio achieved the highest extraction efficiency with a yield of 3.32 mg/g. Furthermore, the developed HPLC method was validated and the correlation coefficient (R) values were within the satisfactory range of 0.9995-0.9999 over the linearity range of 1.53-417 ㎍/mL. The limit of detection and limit of quantification for the six active components were between 0.03-0.08 ㎍/mL and 0.08-0.26 ㎍/mL, respectively. With these newly optimized and developed methods, four batches of O. japonicus were analyzed to confirm the high extraction efficiency of the method and the feasibility of an application.