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In this work, equilibrium molecular dynamics (MD) simulations in a microcanonical ensemble are performed to 
evaluate the friction coefficient of a Brownian particle (BP) in a Lennard-Jones (LJ) solvent. The friction coeffi-
cients are determined from the time dependent friction coefficients and the momentum autocorrelation functions of 
the BP with its infinite mass at various ratios of LJ size parameters of the BP and solvent, σB/σs. The determination of 
the friction coefficients from the decay rates of the momentum autocorrelation functions and from the slopes of the time 
dependent friction coefficients is difficult due to the fast decay rates of the correlation functions in the momentum- 
conserved MD simulation and due to the scaling of the slope as 1/N (N: the number of the solvent particle), res-
pectively. On the other hand, the friction coefficient can be determined correctly from the time dependent friction 
coefficient by measuring the extrapolation of its long time decay to t=0 and also from the decay rate of the momentum 
autocorrelation function, which is obtained by time integration of the time dependent friction coefficient. It is found 
that while the friction coefficient increases quadratically with the ratio of σB/σs for all σB, for a given σs the friction 
coefficient increases linearly with σB.
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Introduction

Understanding friction and measuring the friction coeffi-
cients of molecules in liquids are basic problems that can be used 
to characterize the dynamics of solute molecules in solution. 
The friction coefficient plays a central role in problems ranging 
from the rates of chemical reactions in the condensed phase to 
the description of polymer dynamics in solution. The force and 
momentum autocorrelation functions from which the friction 
coefficient may be determined present interesting features. The 
computation of the friction coefficient from the time integral of 
the force autocorrelation function must deal with the plateau 
value problem since the infinite time integral of this correlation 
function is zero.1 The only way to have a non-zero value for the 
friction coefficient is by first taking the infinite mass limit of 
the solute. On the other hand, the calculation of the friction 
coefficient from the momentum autocorrelation must account 
for the exponential decay of this quantity at long times due to 
the evolving of the solvent particles in the presence of the ex-
ternal force field generated by the fixed particle.

Calculations of the friction coefficient by molecular dyna-
mics (MD) simulations are well-studied problems that have 
been addressed many times. Nevertheless, the computation of 
the friction coefficient from MD simulations involves a number 
of subtle issues for finite-size systems as discussed in several 
recent papers.2-4 The problems center around the definition of 
the friction coefficient in terms of the projected dynamics and 
its relation to the fixed-particle friction coefficient for a massive 
Brownian particle (BP). The estimates of the friction coeffi-
cients have been shown to depend on the order in which the 
mass of the BP and the solvent particle number N are taken to 
infinity. For finite-size systems one must investigate how large 
N must be to obtain a reliable estimate of the friction; this typi-

cally requires very large MD simulations. Similarly, the estimate 
of the diffusion coefficient from the velocity autocorrelation 
function requires large scale simulations, especially for large 
BPs, due to the importance of hydrodynamic contributions.

Recently the friction and diffusion coefficients of a massive 
BP in a mesoscopic solvent were computed from the force and 
velocity autocorrelation functions.5 The mesoscopic solvent is 
described in terms of free streaming of the solvent molecules, 
interrupted at discrete time intervals by multi-particle collisions 
that conserve mass, momentum, and energy. The BP interacts 
with the solvent molecules through repulsive Lennard-Jones 
forces. The decays of the force and velocity correlation functions 
are analyzed in the microcanonical ensemble as a function of 
the number N of solvent molecules and the BP mass and dia-
meter. The simulations were carried out for large system sizes 
and long times to assess the N-dependence of the friction coeffi-
cient. The decay rates of these correlations are confirmed to 
vary as N‒1 in accord with earlier predictions.4 

The purpose of this paper is twofold: First, we investigate 
the issue discussed above by carrying out large scale simulations 
confirming the treatment of momentum conservation of the 
whole system related to the estimates of the friction coefficients. 
Second, we use these calculations to understand the effects of 
the size ratio of the BP and the solvent particle on the friction 
coefficient.

The outline of the paper is as follows. In Sec. II we specify 
the system being investigated and also sketch the molecular 
dynamics simulation methods. The friction coefficients that are 
of interest in this study are defined in Sec. III. In Sec. IV we 
present the results of simulations of the friction coefficients 
for a smooth spherical BP interacting with the solvent particles 
through purely repulsive Lennard-Jones forces. The conclu-
sions of the paper are given in Sec. V.
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Table 1. Molecular dynamics simulation parameters for several Len-
nard-Jones (LJ) systems

System σB of Brownian
particle (nm)

σs of LJ solvent
particle (nm)

Length of
box (nm)

S2/1 0.2 0.1 3.42
S2/2 0.2 0.2 6.84
S2/4 0.2 0.4 13.68
S4/2 0.4 0.2 6.84
S4/4 0.4 0.4 13.68
S4/8 0.4 0.8 27.36
S8/4 0.8 0.4 13.68
S8/8 0.8 0.8 27.36

S8/16 0.8 1.6 54.72

Molecular Dynamics Simulation Details

There are 9 Lennard-Jones (LJ) systems under investiga-
tion, as shown in Table 1. Each system consists of a BP with 
LJ parameter σB and solvent particles of N = 32,000 each of 
which has LJ parameter σs. The LJ potential used in our mole-
cular dynamics (MD) simulations is a purely repulsive CWA 
(Chandler-Weeks-Andersen) potential:6

vCWA(r) =
4ϵ [( σ )12 ‒ ( σ )6 + 1 ], r ≤ rc

(1)r r 4
0,                                         r > rc

where the LJ parameters are chosen as σ = (σB + σs)/2 for the 
BP-solvent particle interaction or σ = σs for interaction bet-
ween solvent particles and ε = 1.006 kJ/mol. The inter-particle 
potential is truncated at rc = 21/6σ. The masses of the LJ par-
ticles are m = 3.995 g/mol which is 1/10 of argon mass. The 
mass of the BP is infinity and several MD simulation methods 
are employed for the treatment of the infinite mass limit in Sec. 
IV. The length of the simulation box is obtained from the fixed 
reduced density of the system which is defined as ρ* = ρσs

3 = 
Nσs

3/V. The value of ρ* is chosen as 0.8 and the lengths of the 
simulation boxes are given in Table 1. The preliminary cano-
nical ensemble (NVT fixed) MD simulations of N = 32,001 LJ 
particles are started in the cubic box of given lengths with a 
fixed temperature T = 40.33 K and then the simulations are 
switched to the microcanonical ensemble (NVE fixed) after a 
long time equilibration for the constant temperature. The equa-
tions of motion are solved using the velocity Verlet algorithm7 
with a time step of 2 × l0-15 seconds. All the systems were fully 
equilibrated and the equilibrium properties are averaged over 
50 blocks of 1,000,000 time steps. The configurations of the 
BP were stored every 5 time steps for further analyses. 

Force and Momentum Autocorrelation Functions 

The friction coefficient is given in terms of the integration on 
time t of the equilibrium autocorrelation function < F(t) ․ F(0) > 
of the instantaneous microscopic force F(t) experienced by 
the BP in the well-known Green-Kubo formula:8

ζ = 1 ∫∞ dt < F(t) ․ F(0) >, (2)3kT 0

where k is Boltzmann's constant and T is the absolute tem-
perature. However, for finite size systems, it is expected that, 
for t → ∞, the friction coefficient should be zero according to 
the ergodic postulate of equilibrium statistical mechanics.1

On the other hand, using the projection operator technique9-12 
it is possible to derive an alternate expression for the time- 
dependent friction coefficient:

ζ =
1
∫
∞

dt lim < F(t) ․ F(0) >, (3)
3kT 0    M→∞

where M is the mass of the BP. It is convenient to define a time 
dependent friction coefficient as the finite time integral of the 
projected force, F+(t), autocorrelation function as,

ζ(t) =
1 l

∫
t
dτ < F+(τ) ․ F(0) >. (4)

3kT 0

Through the Laplace transforms of the projected and un-
projected force autocorrelation functions,1 the time dependent 
friction coefficient is simply given by

ζu(t) ≈ ζe‒ζt/µ, (5)

where µ = MNm/(M + Nm) and µ → Nm in the limit M → ∞ 
with the number of solvent particles, N, and the mass of the 
solvent particle, m. According to Eq. (5), we can estimate the 
friction coefficient in two ways: the extrapolation of the long 
time decay of the time dependent friction coefficient ζu(t) to t = 
0 (noted as ζ1), or from the decay rates of the force autocorre-
lation function or ζu(t) (noted as ζ2). In our MD simulations the 
actual expression to calculate the time dependent friction coeffi-
cient is given in terms of the unprojected force autocorrelation 
function

ζu(t) =
1
∫

t
dτ lim < F(τ) ․ F(0) >. (6)

3kT 0     M→∞

The momentum autocorrelation function can be determined 
from the Langevin equation and decays exponentially as

C(t) = < P(t) ․ P(0) > / < P(0)2 > = e‒ζt/µ. (7)

Since the diffusion coefficient is the infinite time integral of 
the velocity correlation function we have the Einstein relation, 
D = kT/ζ. The friction coefficient can be determined from the 
long time decay of the momentum autocorrelation function 
(noted as ζ3) according to Eq. (7).

It is interesting that for long times the other form of ζu(t) in 
Eq.(6) can be obtained by the time derivative of C(t) in Eq. (7):
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Figure 1. Logarithm of the normalized momentum autocorrelation 
functions for the system of S2/2. Solid line, the infinite mass MD 
simulation; dotted line, the constraint MD simulation; dashed line, 
the momentum-conserved MD simulation; and long-dashed line, c(t)
obtained by time integration of ζu(t), which is obtained from the mo-
mentum-conserved MD simulation, using Eq. (9).

‒Nm
d

C(t) =
1

 < F(t) ․ P(0) >,
dt 3kT

   =
1 lim 1

∫
s

du F(u + t) ․ P(u) 
3kT s 0s →∞

   = ‒ 1 lim 1
∫

s
du F(u) ․ P(u + t) (8)

3kT s 0s →∞

   =
1 lim 1

∫
s

du ∫
t
dτ F(u) ․ F(u + τ) 

3kT s 0 0s →∞

   =
1
∫

t
dτ < F(τ) ․ F(0)  > = ξu(t),3kT 0

where < P(0)2 > = 3kTNm in the limit M → ∞, P(t) = ‒∫tdτF(τ)0
was used and ξu(t) was also used to distinguish from ζu(t) in 
Eq. (6), and vice versa:

1 ‒ 1 l

∫
t
dτζu(τ) = c(t), (9)

Nm 0

where c(t) was used to distinguish C(t) in Eq. (7). By time di-
fferentiation of C(t) in Eq. (8), two more friction coefficients 
are obtained from ξu(t) (noted as ζ4 and ζ5), like ζ1 and ζ2 in Eq. 
(5), and furthermore by time integration of ζu(t) in Eq. (9), one 
more friction coefficient is obtained from c(t) (noted as ζ6), like 
ζ3 in Eq. (7). Hence, we are dealing with a total of 6 friction 
coefficients.

Results and Discussion

In the definition of the friction coefficient three limit proce-
dures are involved; the long time limit (t → ∞); the thermo-
dynamic limit (N → ∞); and the infinite mass limit (M → ∞).3 
The ordering of these limits is very important as they do not 
always commute. This can be easily observed in the expression 
(5) for the time dependent friction coefficient in the Langevin 
approximation. The Langevin approximation is expected to 
be valid for a finite but sufficiently large mass of the BP and 
for a large number of solvent particles. If we first consider the 
infinite time limit the resulting friction coefficient is zero. The 
only way to have a non-zero value for the friction coefficient 
is by first taking M → ∞.3 In the thermodynamic limit N → ∞, 
the projected and unprojected force autocorrelation functions 
are the same1,5 and the expression (6) is possible. Since MD 
simulations are carried out at finite N, the study of the N (and 
M) dependence of ζu(t) and the estimate of the friction coeffi-
cient from either the decay of the momentum or force auto-
correlation functions is of interest.4,5

Furthermore, in order to calculate the friction coefficients of 
the BP from Eqs. (6) and (7), the mass of the BP, M, becomes 
infinity, or the BP is fixed in space using a holonomic constraint 
method.13 While the MD simulation by using an infinite mass 
violates the equation of motion since the BP never moves with 
the force on it, the constraint method MD simulation returns 
the BP back to its original position with zero velocity, and tra-
jectories by both MD simulations are not the same. However, 

it is found that the momenta of the whole system carried out by 
both the infinite mass and the constraint method MD simula-
tions are not conserved, because the momentum of the BP is 
not well defined with zero velocity and infinite mass. Never-
theless, the momentum of the fixed particle is defined as the 
negative of the total momentum of the solvent particles.3,4 In 
Fig. 1, the logarithm of the normalized momentum auto correla-
tion functions, C(t) and c(t), is shown for different MD simula-
tions and using Eq. (9) for the system of S2/2. The momentum 
autocorrelation functions obtained from both the infinite mass 
and the constraint method MD simulations in this plot are not 
linear, and the obtained values of ζ3 according to Eq. (7) under 
the assumption of the linearity of these functions are 1.080 
kg/(mol․ps) by the infinite mass MD and 0.924 kg/(mol․ps) by 
the constraint method MD, respectively.

A reasonable trick to bypass this difficulty is to put the mass 
of the BP as 1090 g/mol, and in this case the momentum of the 
system is conserved: The magnitude of the mass of the BP is 
on the order of 90 and its velocity is on the order of ‒90, but its 
momentum has a finite value and is equal to the negative of the 
total momentum of the solvent particles. However, the total 
instantaneous momentum of the whole system is on the order 
of ‒5 ~ ‒6. The linear behavior of the momentum autocorrela-
tion function obtained from the momentum-conserved MD 
simulation in Fig. 1 indicates an exponential decay and the 
estimate of ζ3 from the slope of the straight line is 0.588 kg/ 
(mol․ps). The momentum autocorrelation function obtained 
from the momentum-conserved MD simulation is very different 
from those obtained from both the infinite mass and the con-
straint method MD simulations. 

On the other hand, the time dependent friction coefficients 
for different MD simulations for the system of S2/2 are plotted 
in Fig. 2. While the time dependent friction coefficient obtain-
ed from the momentum-conserved MD simulation fluctuates 
along the least-square fit straight line (the better view is given 
in Fig. 3 as the dotted line), the other two coefficients obtained 
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Figure 2. Logarithm of the time dependent friction coefficients for the
system of S2/2. Solid line, the infinite mass MD simulation; dotted 
line, the constraint MD simulation; and dashed line, the momentum- 
conserved MD simulation. The straight lines show the extrapolation of
the exponential long time-decay to t = 0 to determine the value of ζ1.
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Figure 3. Logarithm of the normalized momentum autocorrelation 
functions and time dependent friction coefficients for the system of 
S2/2. Dotted line, ζu(t) calculated directly from Eq. (6); dashed line, 
C(t) calculated directly from Eq. (7); dot-dashed line, ξu(t) obtained 
by time differentiation of the dashed line C(t) using Eq. (8); and 
long-dashed line, c(t) obtained by time integration of the dotted line 
ζu(t) using Eq. (9). The straight solid lines are the extrapolation of the 
exponential long time-decay to t=0 to determine ζ's. 

from both the infinite mass and the constraint MD simulations 
deviate from the corresponding straight lines. The ζ1 values 
estimated from the extrapolation of the long time decay of the 
time dependent friction coefficient ζu(t) to t = 0 are 0.160, 0.162, 
and 0.167 kg/(mol․ps), respectively. In general, these values 
are the same within statistical error. The total instantaneous 
force of the whole system for the three MD simulations is 
equally on the order of ‒13 ~ ‒14. The momentum autocorrela-
tion function c(t) obtained by time integration of ζu(t), which 
is calculated from the momentum-conserved MD simulation, 
using Eq. (9) is plotted as the long-dashed line in Fig. 1 and the 
estimate of ζ6 is 0.158 kg/(mol․ps). The agreement of this value 

of ζ6 with the above values of ζ1 is natural since the calculation 
of the time dependent friction coefficients ζu(t) in Eq. (6) for 
the three MD simulations is valid, and the momentum auto-
correlation function c(t) is obtained by time integration of ζu(t).

Comparing the slopes, ‒ζ/Nm, of the four momentum auto-
correlation functions C(t) and c(t) in Fig. 1 (ζ3 = 1.080, 0.924, 
0.588, and ζ6 = 0.158 kg/(mol․ps)), the three C(t) values cal-
culated directly from the momentum of the BP using Eq. (7) 
are wrong. The main problem is the momentum conservation 
of the system. In the case of the momentum-conserved MD 
simulation, the total instantaneous momentum of the whole 
system is on the order of ‒5 ~ ‒6, even when using the double 
precision code. This might be related to the well-known round-
ing error in the calculation of the velocity in the usual MD 
simulation. The next possible explanation for this is related to 
the thermodynamic limit (N → ∞). In our MD simulation, since 
N = 32,000 and Nm = 127.84 kg/mol, the slope, ‒ζ/Nm, of the 
logarithm of C(t) should be ‒0.00125 ps to get ζ = 0.16 kg/ 
(mol․ps), which means that, at t = 40 ps, ln C(t) = ‒0.05 and 
C(t) = 0.95. Hence, the decay of C(t) should be very small even 
after 40 ps. Since ‒ζ/Nm scales as N‒1, C(t) should decay very 
slowly for large N. However, the actual value of lnC(t) at t = 
40 ps is ‒0.186 as seen in Fig. 1.

In the previous mesoscopic MD simulation study5 the systems 
were such that N = 5,120 ~ 327,680, M/m = 5 N ~ 200 N and 
M = ∞. The obtained friction coefficients of the BP from C(t) 
and ζu(t) were almost the same for various values of N and M, 
which means the calculated C(t) were correct, and the decay 
of C(t) scaled very well as N‒1. C(t) and c(t), and ζu(t) and ξu(t) 
for various values of N and M were difficult to distinguish in 
the figures. In this mesoscopic MD simulation using multi-
particle collision dynamics, the system is divided into several 
cells in which the mass, momentum and energy are conserved. 
While the solvent particles only near the BP interact with it, 
the other particles far from the BP are momentum-conserved 
in each cell. Since the momentum of the BP is defined as the 
negative of the total momentum of the solvent particles, the 
decay of C(t) is very slow for large N. In the present MD simula-
tion study, the solvent particles interact with each other and the 
momentum of the solvent particles far from the BP is in ques-
tion. If we neglect the interaction between solvent particles, 
then only short CWA interactions between the BP and the near 
solvent particles exist, and the other particles far from the BP 
undergo free streaming motion. In this case, we expect that the 
decay of C(t) is very slow for large N. This test system is cur-
rently under study.

We then conclude the discussion of our results in Fig. 3, 
which show the logarithm of the time dependent friction coe-
fficient ζu(t) and momentum autocorrelation function C(t) for 
the case of S2/2. The dotted line is the logarithm of ζu(t) cal-
culated directly from Eq. (6) (the dashed line in Fig. 2), and the 
straight line is the extrapolation of the exponential long time- 
decay to t = 0 and is used to determine ζ1 and ζ2, according to 
Eq. (5). The dashed line (the dashed line in Fig. 1) is that of 
C(t) calculated directly from Eq. (7) and is used to determine 
ζ3. The dot-dashed line is ξu(t) obtained by time differentiation 
of the dashed line C(t) using Eq. (8), and the straight line is the 
extrapolation of the exponential long time decay to t = 0 and is 
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Table 2. Comparison of friction coefficients ζi (kg/ps·mol) of the 
Brownian particle. ζ*

1 is the reduced friction coefficient of ζ1, defined 
by ζ*

1 = ζ1σB(mϵ)‒1/2

System   ζ1 (ζ*
1) ζ2 ζ3 ζ4 ζ5 ζ6

S2/1 0.732 (73.2) 0.161 0.801 1.091 2.965 0.756
S2/2 0.167 (16.7) 0.474 0.588 1.334 3.353 0.158
S2/4 0.042 (4.2)  0.320 0.512 0.750 3.089 0.044
S4/2 0.369 (73.8) 1.086 0.759 1.357 2.542 0.363
S4/4 0.094 (18.8) 0.376 0.674 0.932 3.081 0.091
S4/8 0.021 (4.2)  0.041 0.637 0.970 3.514 0.022
S8/4 0.180 (72.0) 0.659 0.648 1.190 4.140 0.174
S8/8 0.043 (17.2) 0.163 0.371 0.476 1.455 0.044
S8/16 0.011 (4.4) 0.321 0.295 0.548 3.619 0.010
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Figure 4. Friction coefficient ζ1 as function of σs for a given σB. The 
dot-dashed line indicates the change of ζ1 with the increase of σB for 
σs = 0.4 nm.

used to determine ζ4 and ζ5. The long-dashed line (the long- 
dashed line in Fig. 1) is c(t) obtained by the time integration of 
the dotted line ζu(t) using Eq. (9) to determine ζ6. It is notable 
that the behavior of the dot-dashed line ξu(t) has a similarity to 
that of the dotted line ζu(t) with a multiplying factor. If the 
momentum autocorrelation function C(t) calculated directly 
from Eq. (7) is correct, then ξu(t) obtained by time differentia-
tion of C(t) using Eq.(8) should be the same as ζu(t) calculated 
directly from Eq. (6). That is, C(t) is not small enough to en-
counter the factor Nm (= 127.84 kg/mol) in Eq. (8) for some 
reason. Likewise, since ζu(t) calculated directly from Eq. (6) is 
correct, c(t) obtained by the time integration of ζu(t) using Eq. (9) 
is correct. In order for C(t) to be the same to c(t), C(t) should 
be reduced in proportion to the ratio of the slopes ζ6/ζ3 = 
0.158/0.588 = 0.27, to encounter the factor Nm in Eq. (8). 

The estimated friction coefficients for all the systems obtain-
ed from our momentum-conserved MD simulations are col-
lected in Table 2. We have found that it is difficult to deter-
mine the friction coefficient from the slope, ‒ζ2/Nm, of ζu(t), 
especially for very large N where the slope is close to zero. 
While the slopes scale as 1/N for the smaller N values, the small 
value of the slope and relatively large statistical error makes it 
difficult to determine this scaling for very large values of N. 
However, ζ1 may be determined accurately from the extrapola-

tion of the long time behavior of ζu(t) to t = 0 as discussed above. 
The estimated friction coefficient from the slope, ‒ζ6/Nm, of 
c(t) also gives a reasonable value since the c(t) is obtained by 
time integration of ζu(t) using Eq.(9). The other friction coe-
fficients ζ3, ζ4, and ζ5, which are obtained from C(t) directly 
using Eq. (7) and obtained from ξu(t) by time integration of C(t) 
using Eq. (8), are not correct since the momentum autocorre-
lation function C(t) is not correct as discussed above.

Fig. 4 shows the friction coefficient ζ1 as a function of σs for 
different σB. For a given σB, the friction coefficient decreases 
quadratically with σs. In other words, the friction coefficient 
increases quadratically with the ratio of σB/σs for all σB. A rough 
estimate of the microscopic contribution to the friction can be 
obtained using a hard sphere binary collision model with the 
collision diameter chosen to be σB: ζm = 8/3 ρσ 2 (2πmkT)1/2.B
The behavior of ζ1 on the ratio of σB/σs follows the microscopic 
description of the friction. On the other hand, for a given σs, 
for example for σs = 0.4 nm, the friction coefficient increases 
linearly with σB along the dot-dashed line in Fig. 4. The hydro-
dynamic contribution of the friction is given by ζh = 4πσBη with 
the slip boundary condition. In this case, the behavior of ζ1 on 
σB for a given σs follows the hydrodynamic description of the 
friction. Usually the microscopic and hydrodynamic descrip-
tions of the friction are adequate for small and large σB, res-
pectively.5 Finally the reduced friction coefficients, ζ*

1, are 
listed in Table 2 and ζ*

1 for the same ratio of σB/σs are essen-
tially the same, which confirms the validity of the estimate of 
ζ1 through our MD simulations.

Conclusion 

The long time molecular dynamics (MD) simulations of both 
the momentum autocorrelation functions and the time depen-
dent friction coefficients of a Brownian particle (BP) in a micro-
canonical ensemble are carried out to determine the friction 
coefficient of the BP. Although many MD simulation methods 
are employed to treat the infinite mass limit of the Brownian 
particle, the determination of the friction coefficients from the 
decay rates of the momentum autocorrelation functions is diffi-
cult due to the invalid momentum conservation of the system 
in both the infinite mass and the constraint MD simulations 
and due to the fast decay rates of these correlation functions in 
the momentum-conserved MD simulation. Also, the determina-
tion of the friction coefficients from the slopes of the time de-
pendent friction coefficients, especially for very large N where 
the slope is close to zero, is difficult due to the scaling of the 
slope as 1/N. However, the friction coefficient (ζ1) can be deter-
mined correctly from the time dependent friction coefficient 
by measuring the extrapolation of its long time decay to t = 0. 
The momentum autocorrelation function obtained by time in-
tegration of the time dependent friction coefficient, which is 
calculated from the momentum-conserved MD simulation, 
can also give a correct estimate (ζ6) of the friction coefficient 
from its decay rate. The friction coefficients ζ6 and ζ1 are in a 
good accord since the calculation of the time dependent friction 
coefficients for the momentum-conserved MD simulations is 
valid, and the momentum autocorrelation function is obtained 
by time integration of time dependent friction coefficient. The 
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other friction coefficients ζ2, ζ3, ζ4, and ζ5 are not correct as 
discussed in the previous section.

While the friction coefficient increases quadratically with 
the ratio of σB/σs for all σB, which follows the microscopic des-
cription of the friction: ζm = 8/3 ρσ 2 (2πmkT)1/2, for a given B
σs the friction coefficient increases linearly with σB which fol-
lows the hydrodynamic description of the friction, ζh = 4πσBη. 
Finally it is found that the reduced friction coefficients ζ*

1 for 
the same ratio of σB/σs are essentially the same.
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