• Title/Summary/Keyword: solvent pH

Search Result 898, Processing Time 0.027 seconds

Antimutagenic and Antigenotoxic Effects of Ligularia fischeri Extracts (곰취 추출물의 항돌연변이성 및 유전독성억제효과)

  • 함승시;이상영;오덕환;정성원;김상헌;정차권;강일준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.745-750
    • /
    • 1998
  • The antimutagenic and antigenotoxic effects of ethanol, methanol, water and non-heating ethanol extract of Ligularia fischeri were investigated using Ames test and micronucleus test. Four solvent extracts by themseleves did not induce mutagenesis. The four extract of 200㎍/plate showed approximately 84.7%, 77.1%, 72.5% and 71% inhibitory effect on the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) and 67.9%, 66.8%, 64.6% and 56% inhibition on the mutagenesis by 4-nitroquinoline-1-oxide(4NQO) against TA100 strain, whereas 70.2%, 60.9%, 61.9% and 52.8% inhibitions were observed on the mutagenesis induced by 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol(Trp-P-1) in the presence of 200㎍/plate. TA100 strain was more sensitive than TA98 strain by four kinds of extracts on antimutagenesis. The effects of Ligularia fischeri extracts on the frequencies of micronucleated poly chromatic erythrocytes(MNPECs) induced by MNNG were investigated in the bone marrow. Ten, 20, 40 and 80mg g/kg of each extract were administered to animals immediately after injection of MNNG and the exposure time was 36 hours. Inhibitory effects of Ligularia fischeri ethanol extracts were 12%, 35.3%, 58.8%, and 57%, in the presence of 20, 40, 60 and 80mg/kg, respectively whereas methanol extracts showed 15.5%, 32.7%, 50.8%, and 57.9% inhibitory effects, respectively. Both extracts showed enhanced antimutagenic and antigenotoxic effects. These results showed a good correlation between antimutagenic effects in in vitro and in in vitro assay.

  • PDF

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

Tetrahydrofuran-Containing Crown Ethers as Ionophores for NH+4-Selective Electrodes

  • Jin, Hua-Yan;Kim, Tae-Ho;Kim, Jin-Eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • The ammonium ion-selective electrodes ($NH^+_4$-ISEs) based on the tetrahydrofuran(THF)-containing-16-crown-4 derivatives,1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^1$) and 5,10,15,20,-tetramethyl-1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^2$), were prepared and the electrode characteristics were tested. The conditioned $NH_4^+$-ISEs (E1) based on $L^1$ with TEHP as a plasticising solvent mediator gave best results with near-Nernstian slope of 53.9 mV/decade of activity, detection limit of $10^{-4.9}$ M, and enhanced selectivity coefficients for the $NH^+_4$ ion with respect to an interfering $K^+$ ion (log $K^{pot}_{NH_4^+,K^+}$ = -1.84). This result was compared to other ammonium ionophores reported previously, for example, that of nonactin (log $K^{pot}_{NH_4^+,K^+}$ = -0.92). The proposed electrode showed no significant potential changes in the range of 3.0 < pH < 9.0.

High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer (Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서)

  • Kim, Sangwoo;Bak, So-Young;Han, Tae Hee;Lee, Se-Hyeong;Han, Ye-ji;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate (이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구)

  • Park, U-Joo;Park, Jin-Young;Kim, Jin-Young;Kim, Yong-Seok;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate (FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

Survey of ERETIC2 NMR for quantification

  • Hong, Ran Seon;Hwang, Kyung Hwa;Kim, Suncheun;Cho, Hwang Eui;Lee, Hun Joo;Hong, Jin Tae;Moon, Dong Cheul
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • The ERETIC (Electronic REference To access In vivo Concentrations)2 method is a new qNMR experimental technique to measure analytes based on the signal of the reference compound without additional hardware equipment. In this study, ERETIC2 method was validated, and we sought to identify whether it would be possible to apply this method to a specific compound analysis of metabolites in plant. The $90^{\circ}$ pulse value (P1) and spin-lattice relaxation time ($T_1$) of each compound were measured for ERETIC2. The $9^1H$ of 3-(trimethylsilyl) propionic-2,2,3,3-$d_4$ acid (TSP) was used as a reference peak for ERETIC 2, and then, a suitable solvent and pulse sequence for each compound were selected. Under the NOESY-presat sequence, the relative accuracy error for quantitative analyses of primary metabolites was within the range of 5%, with the exception of glucose, which showed ${\geq}$ 55% error due to saturation. It showed excellent results for the quantification of glucose by using a $30^{\circ}$ pulse sequence, which did not suppress the water peak. In addition, the quantitative accuracy for secondary metabolites was extremely accurate, with an error ${\leq}$5% when considering the purity of the standard sample. The ERETIC2 method showed outstanding linearity, precision, and accuracy.

Tallium(I) Ion-Selective Electrodes Based on Crown Ethers (크라온에테르를 이용한 탈륨(I) 이온 선택성 전극)

  • Sung Min Kim;Sung Uk Jung;Jineun Kim;Jae Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.773-778
    • /
    • 1993
  • Poly(vinyl chloride)(PVC) membrane electrodes based on the lipophilic neutral carrier, dibenzo-18-crown-6(DB18C6) and benzo-15-crown-5 (B15C5) as the active sensors for Tl$^+$ ion have been prepared and tested in different content of the potassium tetrakis(4-chlorophenyl)borate (KTClPB) as lipophilic salt. Dioctyl adipate (DOA), 2-nitrophenyl phenyl ether (NPPE) and o-nitrophenyl actyl ether (NPOE) were used as plasticizing solvent mediators. Electrodes exhibited good linear responses of 40∼55 mV decade$^{-1}$ for Tl$^+$ ion within the concentration ranges 10$^{-1}$∼10$^{-5}$M TlNO$_3$. Selectivity coefficients of interfering ions (alkali metal, alkaline earth metal and some transition metal ions) for Tl$^+$-ISE were determined by separate solution method and were sufficiently small for most of them. These crown ether type ion-selective electrodes are suitable for use with aqueous solution at pH > 3.

  • PDF

Facile Preparation of Nanoporous Silica Aerogel Granules (나노다공성 실리카 에어로겔 과립의 간단 제조)

  • Kim, Nam Hyun;Hwang, Ha Soo;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.209-213
    • /
    • 2011
  • Hydrophobic silica aerogel beads with low thermal conductivity and high porosity were prepared using a cost-effective sodium silicate as a silica source via an ambient-pressure drying process. Monolithic wet gels were first prepared by adjusting pH (~5) of a diluted sodium silicate solution. The silica aerogel beads (0.5~20 mm) were manufactured by breaking the wet gel monoliths under a simultaneous solvent exchange/surface modification process and an ambient-pressure drying process without using co-precursors or templates. Dried silica aerogel beads exhibit a comparable porosity ($593m^2/g$ of surface area, 34.9 nm of pore size, and $4.4cm^3/g$ of pore volume) to that of the aerogel powder prepared in the same conditions. Thermal conductivity of the silica aerogel beads (19.8 mW/mK at $20^{\circ}C$) is also identical to the aerogel powder.

A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: Their influence on SO2 absorption behavior

  • Zhu, Jiahong;Xu, Yingjie;Feng, Xiao;Zhu, Xiao
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.148-155
    • /
    • 2018
  • To get a better understanding of the effect of physicochemical properties and microstructure on $SO_2$ absorption behavior of DESs with different molar ratios of EmimCl and EG (from 2:1 to 1:2), densities (${\rho}$), viscosities (${\eta}$), speeds of sound (u), refractive indices ($n_D$), and thermal decomposition temperatures ($T_d$) of EmimCl-EG DESs were measured and used to obtain the other derived properties, such as thermal expansion coefficient (${\alpha}_p$) and activation energy for viscous flow ($E_{\eta}$). Moreover, FT-IR spectra and in situ variable-temperature NMR spectroscopy were employed to study the microstructures of DESs. Based on physicochemical and spectroscopic properties, the influence of the concentrations of EmimCl on the interactions in DESs was explored to be associated with their $SO_2$ absorption behavior. The results show that the interactions between $Emim^+$ and $Cl^-$ of EmimCl is gradually weakening with increasing the concentration of EG in DESs by forming of hydrogen bond interaction of $O-H{\cdots}Cl^-$, resulting in a decrease of ${\rho}$, ${\eta}$, u, $n_D$, and $T_d$ of DESs, and hindering the charge-transfer interaction of $SO_2$ with $Cl^-$ and deceasing $SO_2$ capture capacity. Moreover, the $SO_2$ absorption capacity of DESs is proportional to their ${\rho}$ and $E_{\eta}$, respectively.

Determination of Bergenin in Different Parts of Bergenia ciliata using a Validated RP-HPLC Method

  • Ali, Ejaz;Hussain, Khalid;Bukhari, Nadeem Irfan;Arshad, Najma;Hussain, Amjad;Abbas, Nasir;Arshad, Sohail;Parveen, Sajida;Shehzadi, Naureen;Qamar, Shaista;Qamar, Abida
    • Natural Product Sciences
    • /
    • v.27 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • Bergenia ciliata (Family: Saxifragaceae) is a folklore remedy for the treatment of various ailments in Asian countries. Bergenin (1) has been isolated as an active constituent in many studies, however, the amount of bergenin has not been determined in all parts of the plant. A simple RP-HPLC method was developed to determine the amount of bergenin in methanol extracts of leaves, rhizomes and roots of the plant. Separation was achieved on an Agilent Eclipse XDB-C18 column maintained at 25 ℃ using isocratic solvent system (water: methanol: acetic acid; 62.5:37:0.5 v/v/v) adjusted at pH 2 0 at a flow rate of 1.0 mL/min. and detected at 275 nm. Correlation coefficient (0.9952) showed linearity of concentration (5-200 ㎍/mL) and response. The values of LOD (0.00947 ㎍/mL) and LOQ (0.02869 ㎍/mL) indicated that method was sensitive. The recovery of bergenin was 99.99-100% indicating accuracy of method. The methanol extract of rhizomes contained higher amount of bergenin (19.4%) than roots (9.2%) and leaves (6.9%). It is concluded that methanol extract of rhizomes is a better source of bergenin than other parts of the plant. The findings are useful for standardization of bergenin containing extracts and herbal preparations.