• Title/Summary/Keyword: solvent effect

Search Result 1,851, Processing Time 0.036 seconds

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.

Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure

  • Kim, Song-I;Hwang, So-Jeong;Park, Yoon-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1199-1203
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for Michael-type reactions of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ value increases as the incoming amine becomes more basic and the substituent X changes form an electron-donating group (EDG) to an electron-withdrawing group (EWG). The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.48 - 0.51. The Hammett plots for the reactions of 2a-f exhibit poor correlations but the corresponding Yukawa-Tsuno plots result in much better linear correlations with ${\rho}$ = 1.57 and r = 0.46 for the reactions with piperidine while ${\rho}$ = 1.72 and r = 0.39 for those with morpholine. The amines employed in this study are less reactive in MeCN than in water for reactions with substrates possessing an EDG, although they are ca. 8 pKa units more basic in the aprotic solvent. This indicates that the transition state (TS) is significantly more destabilized than the ground state (GS) in the aprotic solvent. It has been concluded that the reactions proceed through a stepwise mechanism with a partially charged TS, since such TS would be destabilized in the aprotic solvent due to the electronic repulsion between the negative-dipole end of MeCN and the negative charge of the TS. The fact that primary deuterium kinetic effect is absent supports a stepwise mechanism in which proton transfer occurs after the rate-determining step.

Solvent Extraction for the Separation of Nd and Pr from Chloride Leaching Solution of Monazite Sand (모나자이트 샌드의 염산침출용액으로부터 용매추출에 의한 Nd와 Pr의 분리)

  • Park, Ju-Ho;Jeon, Ho-Seok;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • Solvent extraction experiments have been performed to separate Nd and Pr from chloride leaching solution of monazite sand using PC88A and D2EHPA. For this purpose, the effect of the saponification of PC88A and D2EHPA on the extraction and separation of the two metals were studied by varying the pH of aqueous solution. In the experimental ranges conducted in this study, the distribution coefficients of Nd were higher than those of Pr and separation factor value increased with the increase of solution pH. Saponification of PC88A enhanced the distribution coefficients of Nd and Pr as well as the separation factor. Saponification of D2EHPA had some effect on the extraction of the two metals but little effect on the separation factor.

Detergency and soil Redeposition in a Drycleaning System -The Effect of Surfactant Type and Their Mixture- (드라이클리닝 시스템에서의 세척성과 재오염성 -계면활성제의 종류와 혼합이 미치는 영향-)

  • 김주연;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.7
    • /
    • pp.1030-1039
    • /
    • 1999
  • The effect of surfactant mixture 9on detergency and soil redeposition in a dry-cleaning system was investigated employing Aerosol OT as an anionic surfactant and Span 80 as a nonionic surfactant. The effect of charge system on soil deposition was also investigated in order to determine the optimum condition at which soil redeposition is minimum,. Soil deposition instead of soil redeposition on cotton, polyester and wool fabrics was measured employing petroleum solvent and perchloroethylene as organic solvents. The results were as follows. 1. Surface tension or interfacial tension was not changed by the addition of any surfactant or surfactant mixtures. In petroleum solvent however interfacial tension between solrent and water decreased when surfactants were added and increased when surfactants were mixed,. 2. The maximum amount of water solubilization increased as the mole fraction of Aerosol OT increased and more water was solubilized in petroleum solvent than in perchloroethylene. 3. The detergency of cotton was greater and the soil deposition rate was lower in Span 80 solution than in Aerosol OT solution. The soil deposition on cotton fabric decreased when water was solubilized in Aersol OT solution 4. The detergency and soil deposition rate of polyester fabric did not change by the surfactant type of the addition of surfactant mixture and soil deposition rate increased bywater solubilization. 5. Soil deposition on wool fabric was very high when Arosol OT was employed in perchloroethylene and the soil deposition did not change greatly by water solubilization.

  • PDF

Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism

  • Hwang, So-Jeong;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1911-1914
    • /
    • 2008
  • Second-order rate constants (kN) have been measured for Michael-type addition reactions of a series of alicyclic secondary amines to 1-phenyl-2-propyn-1-one (2) in MeCN at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. All the amines studied are less reactive in MeCN than in $H_2O$ although they are more basic in the aprotic solvent by 7-9 p$K_a$ units. The Bronsted-type plot is linear with $\beta_{nuc}$ = 0.40, which is slightly larger than that reported previously for the corresponding reactions in $H_2O$ ($\beta_{nuc}$ = 0.27). Product analysis has shown that only E-isomer is produced. Kinetic isotope effect is absent for the reactions of 2 with morpholine and deuterated morpholine (i.e., $k^H/k^D$ = 1.0). Thus, the reaction has been concluded to proceed through a stepwise mechanism, in which proton transfer occurs after the rate-determining step. The reaction has been suggested to proceed through a tighter transition state in MeCN than in H2O on the basis of the larger $\beta_{nuc}$ in the aprotic solvent. The nature of the transition state has been proposed to be responsible for the decreased reactivity in the aprotic solvent.

Effect of Drying Methods on the Production of Graphenes Oxide Powder Prepared by Chemical Exfoliation (화학적 박리법으로 제조된 산화그래핀 분말의 건조방법에 따른 물성 비교)

  • Rho, Sangkyun;Noh, Kyung-Hun;Eom, Sung-Hun;Hur, Seung Hyun;Lim, Hyung Mi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.592-598
    • /
    • 2013
  • Graphene oxide powders prepared by two different drying processes, freeze drying and spray drying, were studied to compare the effect of the drying method on the physical properties of graphene oxide powder. The graphene oxide dispersion was prepared from graphite by chemical delamination with the aid of sulfuric acid and permanganic acid, and the dispersion was further washed and re-dispersed in a mixed solvent of water and isopropyl alcohol. A freeze drying method can feasibly minimize damage to the sample, but it requires a long process time. In contrast, spray drying is able to remove a solvent in a relatively short time, though this process requires exposure to a high temperature for a rapid evaporation of the solvent. The powders prepared by freeze drying and spray drying were characterized and compared by Raman spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and by an elemental analysis. The graphene oxide powders showed similar chemical compositions; however, the morphologies of the powders differed in that the graphene oxide prepared by spray drying had a winkled morphology and a higher apparent density compared to the powder prepared by freeze drying. The graphene oxide powders were reduced at $900^{\circ}C$ in an atmosphere of $N_2$. The effect of the drying process on the properties of the reduced graphene oxide was examined by SEM, TEM and Raman spectroscopy.

Chemical Compositions and Physiological Activities of Doraji(Platycodon grandiflorum) (장생 도라지의 화학성분과 생리활성)

  • 손미예;서종권;김행자;성낙주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.4
    • /
    • pp.717-720
    • /
    • 2001
  • Chemical compositions and physiological activities of Platycodon grandiflorum roots grown for 4 and 24 years were investigated. Chemical compositions of P. grandiflorum roots grown for 24 years were moisture 82.7%, crude protein 1.6%, crude lipid 2.1% crude ash 0.7%. total sugar 6.0% total dietary fiber 2.3% crude saponin 3.4mg% and ascorbic acid 3.0 mg%. Contents of each components in 24 years old roots were higher than that in 4 years old roots and the most abundant mineral was potassium being 879.9mg/kg. Physiological activities of solvent extract from P. grandiflorum roots grown for 4 and 24 years were high in order of ethanol methanol and water extract. The electron-donating abilities and nitrite-scavenging effect of solvent extract of 24 years were high in order of ethanol methanol and water extract. The electron-donating abilities and nitrite-scavenging effect of solvent extract of 24 years old roots were higher than those of 4 years of old roots in the range of 10~40% respectively.

  • PDF

Solvent Extraction Separation of Nd and Pr from Chloride Solution using PC88A and D2EHPA (염산용액(鹽酸溶液)에서 PC88A와 D2EHPA에 의한 Nd와 Pr의 분리추출(分離抽出))

  • Park, Joo-Ho;Jeon, Ho-Seok;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.35-42
    • /
    • 2013
  • Solvent extraction experiments have been performed to investigate an optimum condition to separate Nd and Pr from chloride solutions using PC88A and D2EHPA. In our experimental ranges, the distribution coefficients of Nd were higher than those of Pr. In both of PC88A and D2EHPA extractant system, our results indicated that the increase in concentration ratio of extractant to metal had a great effect on the extraction and separation of the two metals. In extraction with saponified D2EHPA, the initial pH of the aqueous solution and saponification degree had some effect on the extraction of the two metals but little effect on the separation factor.

Evaluation of the Effect of Solvent on the Preparation of PVBC-g-ETFE Film by a Pre-irradiation Method (전조사법에 의한 PVBC-g-ETFE 필름 제조 시 용매의 영향 평가)

  • Lee, Sun-Young;Song, Ju-Myung;Sohn, Joon-Yong;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.610-614
    • /
    • 2011
  • In this study, the effect of solvent on the pre-irradiation grafting of VBC(vinylbenzyl chloride) onto a ETFE(polyethylene-co-tetrafluoroethylene) was evaluated. ETFE film was irradiated to generate radical species onto its backbone chain. Each irradiated film was immersed into VBC monomer mixtures diluted with various solvents such as toluene, heptane, and isopropanol etc. for grafting process and then the degree of grafting of each film was measured. FTIR analysis confirmed that the VBC-g-ETFE film was successful prepared. For the films prepared in the various solvents, the mechanical strength and the distribution pattern of the graft polymer over the cross-section of the films were measured and the effect of solvent was evaluated.

Cleaning Fabricated Metal Thread: A Post-treatment Stability Assessment after Artificial Deterioration and the Application of Synthetic Soil

  • Park, Hae Jin;Hwang, Minsun;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.19-31
    • /
    • 2019
  • To study the cleaning effects and post-treatment stability assessment of various methods of cleaning textiles with metal thread, six naturally-soiled historical textiles with metal thread were investigated at the Metropolitan Museum of Art, New York. Prior to the cleaning of fabricated gold, silver, and copper thread that had been glued onto a paper substrate, the artificial deterioration was carried out in a controlled environment with light(UV and daylight), and temperature and humidity factors which would weaken and damage the samples. A synthetic soil mixture was applied to the samples to imitate soil found on the historic and archaeological textiles with metal thread; the cleaning effect and post-treatment assessment were investigated by use of three textile cleaning methods: mechanical cleaning, wet cleaning, and solvent cleaning. While investigating the naturally-soiled textiles with metal thread, it was determined that the soil colors and sizes of contaminating particles of each textile were different due to the diversity of original environmental factors and conditions. After cleaning with kneaded rubber, Stoddard solvent, n-decane or n-hexane, a bright, clean effect was apparent. Kneaded rubber was successful in picking up both large and small particles, but its stickiness caused some of the metal leaf to peel off. Stoddard solvent produced a good cleaning effect, but after use of n-hexane and n-decane in the cleaning process, a white layer of residue remained on the textile's surface. Wet cleaning was not effective and the rapid humidity changes between wet and dry conditions caused the edges of the paper substrate to lose their original shape.