• Title/Summary/Keyword: solution-based thin film

Search Result 168, Processing Time 0.037 seconds

Synthesis of BaTiO3 Thin Film on Ti Electrode by the Current Pulse Waveform (펄스전류파형을 이용한 Ti 전극위에서 BaTiO3박막의 합성)

  • Kang, Jinwook;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.998-1003
    • /
    • 1998
  • $BaTiO_3$ thin film was electrochemically deposited on Ti electrode in a 0.4 M $Ba(OH)_2$ solution of $85^{\circ}C$ using a current pulse waveform. Both $BaTiO_3$ crystallinity and faradaic efficiency for the film formation were enhanced with the increase of cathodic current density and pulse time. Based on the surface analysis and electrochemical studies, it was suggested that, during cathodic pulsed, the surface pH increase due to the reduction of $H_2O$ accelerates the structural changes of Ti oxides which were formed during anodic cycle. Prior to experiments, Ti oxides were intentionally grown in 0.1 M $H_2SO_4$ solution and the effect of initial oxide film thickness on the $BaTiO_3$ film formation was investigated. The migration of $Ti^{+4}$ ions through the oxide film was retarded with the increase of film thickness and it was observed that the crystallization of $BaTiO_3$ was only limited to the defect area of surface oxides.

  • PDF

Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications (전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구)

  • Se-Hyun Kim;Jeong Min Lee;Daniel Kofi Azati;Min-Kyu Kim;Yujin Jung;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

Solution-Processable Field-Effect Transistors Fabricated Using Aryl Phenoxazine Based Polymers as the Active Layer

  • Yoon, Hye-Seon;Lee, Woo-Hyung;Lee, Ji-Hoon;Lim, Dong-Gun;Hwang, Do-Hoon;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2371-2376
    • /
    • 2009
  • Three phenoxazine-based conjugated polymers, namely, the aryl substituted phenoxazine homopolymer (P1) as well as the dimeric phenoxazine-fluorene (P2) and phenoxazine-bithiophene (P3) copolymers, were synthesized via the Ni(0) mediated Yamamoto reaction and the palladium-catalyzed Suzuki coupling reaction. The weight-averaged molecular weights ($M_w$) of P1, P2, and P3 were found to be 27,000, 22,000, and 15,000, respectively, and their polydispersity indices were 3.6, 1.8, and 2.1. All the polymers were soluble in common organic solvents such as chloroform, toluene, and so on. The UV-visible absorption maxima for P1, P2, and P3 in the film state were located at 421, 415 and 426 nm, respectively, and the ionization potentials of the polymers ranged between 4.90 and 5.12 eV. All the studied phenoxazine-based polymers exhibited amorphous behavior, as confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM) studies. Thin film transistors were fabricated using the top-contact geometry. P1 showed much better thin-film-transistor performance than P2 or P3: A thin film of P1 gave a saturation mobility of 0.81 ${\times}\;10^{-3}\;cm^2V^{-1}s^{-1}$ and an on/off ratio of about $10^2$.

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Study on Solution Processed Indium Zinc Oxide TFTs Using by Femtosecond Laser Annealing Technology (펨토초 레이저 어닐링 기술을 이용한 용액 공정 기반의 비정질 인듐 징크 산화물 트랜지스터에 관한 연구)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • In this study, a femtosecond laser pre-annealing technology based on indium zinc oxide (IZO) thin-film transistors (TFTs) was investigated. We demonstrated a stable pre-annealing process to analyze the change in the surface structures of thin-films, and we improved the electrical performance. Furthermore, static and dynamic electrical characteristics of IZO TFTs with n-channel inverters were observed. To investigate the static and dynamic responses of our solution-processed IZO TFTs, simple resistor-load-type inverters were fabricated by connecting a $1-M{\Omega}$ resistor. The femtosecond laser pre-annealing process based on IZO TFTs showed good performance: a field-effect mobility of $3.75cm_2/Vs$, an $I_{on}/I_{off}$ ratio of $1.8{\times}10^5$, a threshold voltage of 1.13 V, and a subthreshold swing of 1.21 V/dec. Our IZO-TFT-based N-MOS inverter performed well at operating voltage, and therefore, is a good candidate for advanced logic circuits and display backplane.

Development of Nanostructured Light-Absorbers for Ultrasound Generation by Using a Solution-Based Process

  • Sang, Pil Gyu;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.377-377
    • /
    • 2016
  • Under nanosecond-pulsed laser irradiation, light-absorbing thin films have been used for photoacoustic transmitters for ultrasound generation. Especially, nanostructured absorbers are attractive due to high optical absorption and efficient thermoacoustic energy conversion: for example, 2-dimensional (2-D) gold nanostructure array, synthetic gold nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxides. Among them, CNT has been used to fabricate a composite film with polydimethylsiloxane (PDMS) that exhibits excellent photoacoustic conversion performance for high-frequency, high-amplitude ultrasound generation. Previously, CNT-PDMS nanocomposite films were made by using a high-temperature chemical vapor deposition (HTCVD) process for CNT growth. However, this approach is not suitable to fabricate large-area CNT films (>several cm2). This is because a chamber dimension of HTCVD is limited and also the process often causes nonuniform CNT growth when the film area increases. As an alternative approach, a solution-based process can be used to overcome these issues. We develop PDMS composite transmitters, based on the solution process, using several nanostructured light-absorbers such as CNTs, nanoink powders, and imprinted regular arrays of gold nanostructure. We compare fabrication processes of each composite transmitters and photoacoustic output performance.

  • PDF

Polymer Thin Film Transistors Fabricated on Photo Paper (종이위에 구현한 유기박막트랜지스터의 특성)

  • Seong Jae-Yong;Kim Yong-Hoon;Moon Dae-Gyu;Han Jeong-In;Kwak Sung-Kwan;Chung Kwan-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.489-492
    • /
    • 2004
  • In this paper, we demonstrate polymer thin-film transistors (TFTs) on a paper-based flexible substrate. As a substrate, commercially available photo-paper is used with Parylene coating. The parylene layer enables conventionally used wet chemical process and vacuum deposition processes for electrodes and gate insulator. As an active channel layer, we used poly-3-hexylthiophene (P3HT) which is solution process. Field effect mobility up to $(0.06 {\pm} 0.02) cm^2/Vs$ and on/off ratio of $10^3 {\~}10^4$ are achieved on a photo-paper.

  • PDF

Sol-gel processed oxide semiconductor thin-film transistors for active-matrix displays (Sol-gel 공정으로 제작된 산화물 반도체 박막 트랜지스터)

  • Kim, Yong-Hoon;Park, Sung-Kyu;Oh, Min-Seok;Han, Jeong-In
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1342_1342
    • /
    • 2009
  • Zinc tin oxide (ZTO) based thin-film transistors (TFTs) were fabricated on glass substrate by using sol-gel method. The fabricated ZTO TFT had bottom gate and top contact structure with ZTO layer formed by spin coating from ZTO solution. The fabricated TFT showed field-effect mobility of about 2 - $4\;cm^2/V{\cdot}s$ with on/off current ratios >$10^7$, and threshold voltage of 2 V.

  • PDF

Disposable Nitrate-Selective Optical Sensor Based on Fluorescent Dye

  • Kim, Gi-Young;Sudduth, Kenneth A.;Grant, Sheila A.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.209-213
    • /
    • 2012
  • Purpose: This study was performed to develop a simple, disposable thin-film optical nitrate sensor. Methods: The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore. Fluorescence intensity of the sensor increased on contact with a nitrate solution. The fluorescence response of the optical nitrate sensor was measured with a commercial fluorospectrometer. Results: The optical sensor exhibited linear response over four concentration decades. Conclusions: Nitrate ion concentrations in plant nutrient solutions can be determined by direct optical measurements without any conditioning before measurements.