DOI QR코드

DOI QR Code

Study on Solution Processed Indium Zinc Oxide TFTs Using by Femtosecond Laser Annealing Technology

펨토초 레이저 어닐링 기술을 이용한 용액 공정 기반의 비정질 인듐 징크 산화물 트랜지스터에 관한 연구

  • Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • 김한상 (충북대학교 전자정보대학) ;
  • 김성진 (충북대학교 전자정보대학)
  • Received : 2017.09.21
  • Accepted : 2017.10.26
  • Published : 2018.01.01

Abstract

In this study, a femtosecond laser pre-annealing technology based on indium zinc oxide (IZO) thin-film transistors (TFTs) was investigated. We demonstrated a stable pre-annealing process to analyze the change in the surface structures of thin-films, and we improved the electrical performance. Furthermore, static and dynamic electrical characteristics of IZO TFTs with n-channel inverters were observed. To investigate the static and dynamic responses of our solution-processed IZO TFTs, simple resistor-load-type inverters were fabricated by connecting a $1-M{\Omega}$ resistor. The femtosecond laser pre-annealing process based on IZO TFTs showed good performance: a field-effect mobility of $3.75cm_2/Vs$, an $I_{on}/I_{off}$ ratio of $1.8{\times}10^5$, a threshold voltage of 1.13 V, and a subthreshold swing of 1.21 V/dec. Our IZO-TFT-based N-MOS inverter performed well at operating voltage, and therefore, is a good candidate for advanced logic circuits and display backplane.

Keywords

References

  1. W. B. Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: https://doi.org/10.1063/1.2120895]
  2. P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, Appl. Phys. Lett., 100, 202106 (2012). [DOI: https://doi.org/10.1063/1.4718022]
  3. K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, Appl. Phys. Lett., 85, 1993 (2004). [DOI: https://doi.org/10.1063/1.1788897]
  4. W. H. Jeong, J. H. Bae, and H. J. Kim, IEEE Electron Device Lett., 33, 68 (2012). [DOI: https://doi.org/10.1109/LED.2011.2173897]
  5. J. S. Kim, B. S. Oh, M. Piao, M. K. Joo, H. K. Jang, S. E. Ahn, and G. T. Kim, J. Appl. Phys., 116, 245302 (2015). [DOI: https://doi.org/10.1063/1.4904843]
  6. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solids, 352, 1749 (2006). [DOI: https://doi.org/10.1016/j.jnoncrysol.2006.01.067]
  7. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]
  8. F. Jaehnike, D. V. Pham, R. Anselmann, C. Bock, and U. Kunze, ACS Appl. Mat. Interfaces, 7, 14011 (2015). [DOI: https://doi.org/10.1021/acsami.5b03105]
  9. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: https://doi.org/10.1002/adma.2011 03228]
  10. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater., 17, 590 (2005). [DOI: https://doi.org/10.1002/adma.200400368]
  11. Y. Sun and J. A. Rogers, Adv. Mater., 19, 1897 (2007). [DOI: https://doi.org/10.1002/adma.200602223]
  12. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005). [DOI: https://doi.org/10.1063/1.1843286]
  13. B. Zhang, H. Li, X. Zhang, Y. Luo, Q. Wang, and A. Song, Appl. Phys. Lett., 106, 093506 (2015). [DOI: https://doi.org/10.1063/1.4914296]
  14. C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: https://doi.org/10.1149/1.2800562]
  15. S. J. Seo, Y. H. Hwang, and B. S. Bae, Electrochem. Solid-State Lett., 13, H357 (2010). [DOI: https://doi.org/10.1149/1.3474606]
  16. S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, Appl. Phys. A, 94, 775 (2009). [DOI: https://doi.org/10.1007/s00339-008-4957-5]
  17. T. Arguirov, T. Mchedlidze, M. Kittler, R. Rolver, B. Berghoff, M. Forst, and B. Spangenberg, Appl. Phys. Lett., 89, 053111 (2006). [DOI: https://doi.org/10.1063/1.2260825]
  18. A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett., 82, 1146 (2003). [DOI: https://doi.org/10.1063/1.1555693]
  19. J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett., 93, 063501 (2008). [DOI: https://doi.org/10.1063/1.2969780]
  20. C. Avis and J. Jang, Electrochem. Solid-State Lett., 14, J9 (2011). [DOI: https://doi.org/10.1149/1.3516608]
  21. G. H. Gelinck, H.E.A. Huiteman, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B.J.E. van Rens, and D. M. de Leeuw, Nat. Mater., 3, 106 (2004). [DOI: https://doi.org/10.1038/nmat1061]
  22. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature, 445, 745 (2007). [DOI: https://doi.org/10.1038/nature05533]
  23. Y. C. Wang, H. Ahn, C. H. Chuang, Y. P. Ku, and C. L. Pan, Appl. Phys. B, 97, 181 (2009). [DOI: https://doi.org/10.1007/s00340-009-3580-2]