• Title/Summary/Keyword: soluble stability

Search Result 413, Processing Time 0.022 seconds

Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

  • Wang, Huili;Ning, Tingting;Hao, Wei;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.62-72
    • /
    • 2016
  • This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages.

Preparation of Hyaluronic Acid Microspheres with Enhanced Physical Stability by Double Cross-link or Alginate (이중 가교제 또는 알긴산에 의해 물리적인 안정성이 향상된 히알루론산 마이크로입자의 제조)

  • Kim, Dong-Hwan;Song, Chung-Kil;Balakrishnan, Prabagar;Park, Chun-Geon;Choi, Ae-Jin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • Hyaluronic acid (HA) is a natural polymer consisting of disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine. It has a great potential and success in cosmetic and biomedical applications. However, native HA is highly soluble and easily metabolized by enzymes such as hyaluronidase. Thus, various studies have been reported on modifying the physicochemical properties of HA, while maintaining its biocompatibility. For controlled drug delivery, many trials for fabricating HA microspheres were achieved under chemical reaction. The HA microspheres fabricated to improve the physical stability of HA using adipic acid dihydrazide (ADH) by cross-linking reaction has been reported earlier, however it lacks the desired physical stability and rapidly decomposes by swelling or enzymes. Therefore, we prepared double cross-linked HA microspheres (DC-HA microspheres) and alginate containing HA microspheres (AC-HA microspheres) to enhance its physicochemical properties. DC-HA microspheres were prepared using trisodium trimetaphosphate (STMP) under crosslinking reaction after ADH cross-linking reaction. AC-HA microspheres were prepared by adding alginate as a networking polymer. These microspheres were characterized by morphology, particle size, zeta potential, stability against hyaluronidase. Results showed that the DC-HA and AC-HA microspheres are more stable than that of HA microspheres.

Differential Scanning Calorimetry of Skin Collagen (피부조직 콜라겐의 DSC 특성)

  • Kim, Young-Ho;Hong, Sang-Pill;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.571-575
    • /
    • 1995
  • Transition temperature$(T_m)$ and $enthalpy({\Delta}H)$ were examined by means of DSC to obtain basic information on heat stability of skin tissue collagen. From DSC properties of insoluble collagen on hydration time and moisture content, it was found that moisture content had more effect on structural stability of collagen than hydration time. As moisture content increased, $({\Delta}H)$ increased while $(T_m)$ decreased. DSC properties of acetone dried skin on the variation of age and sex showed higher heat stability in case of male rat and heat stability seemed to be connected with age, as $(T_m)$ and $({\Delta}H)$increased with age. Meanwhile, DSC properties of salt soluble collagen showed higher values in female rat than in male rat, and the $(T_m)$ and $({\Delta}H)$ decreased significantly with age in female rat. These results seemed to suggest indirectly that collagen structure varied with age or sex in the same tissue.

  • PDF

Solubility and Storage Stability of Astaxanthin (Astaxanthin의 용해특성 및 저장 안정성)

  • Kim, So-Young;Cho, Eun-Ah;Yoo, Ji-Min;In, Man-Jin;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.546-550
    • /
    • 2008
  • Basic characteristics of astaxanthin including solubility and stability were investigated. Astaxanthin showed a very poor solubility in water, but it was highly soluble in organic solvents such as acetone and acetic acid. The solubility of astaxanthin in acidic condition was 10-20 times higher than those in neutral and basic conditions. Astaxanthin was very unstable in acidic condition under UV irradiation and in the presence of oxygen. Also, heating even for a very short time accelerated the degradation of astaxanthin. In conclusion, it is required to enhance the water-solubility and stability of astaxanthin for industrial application in food and cosmetic area.

Functional Properties of Mucilage and Pigment Extracted from Opuntia ficus-indica (선인장 열매로부터 추출된 점질물 및 색소의 기능성)

  • Lee, Sam-Pin;Whang, Key;Ha, Young-Duck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.821-826
    • /
    • 1998
  • Functional properties of mucilage and pigment extracted from Opuntia ficus-indica var. saboten were determined at various temperatures, pHs and alcohol concentrations. The crude mucilage extracted from pickly pear showed pH 4.2, 0.14% total acidity and 8.1% total soluble solid content(w/w, wet basis). Polysaccharide was purified from mucilage extract by isopropanol precipitation. Intrinsic viscosity of polysaccharide was 18.1dl/g and decreased with increasing KCl concentration. Relative viscosity and color stability of mucilage extract were determined with capillary viscometer and spectrophotometer at 534nm, respectively. In additions of 1~20%(v/v) ethanol, the red pigment of mucilage extract was very stable, but relative viscosity, increased gradually. For heating above 7$0^{\circ}C$, the stability of red pigment decreased drastically, but rheological property of mucilage was not changed. During storage, the red pigment was extremely unstable at above pH 8.3. At both pH 3.0 and pH 4.2, the red pigment was the most stable at 4$^{\circ}C$ for 18 days. In the case of storage at 37$^{\circ}C$, pigment of mucilage extract at pH 3.0 was destroyed more quickly than that at pH 4.2. Natural mucilage extract(pH 4.2) showed the good stability of red pigment at 3$0^{\circ}C$ for 10 days.

  • PDF

Changes in color stability and antioxidant properties of dietary pigments after thermal processing at high pressures (고온가압 처리에 의한 식용색소의 화학안정성 및 산화방지활성 변화)

  • Oh, Boeun;Kim, Kunhee;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.257-263
    • /
    • 2022
  • Various dietary pigments are added to processed foods to improve their sensory and commercial properties. In this study, autoclave sterilization (121℃ for 15 min at 15 psi) was performed on 34 food pigments, and changes in their color stability and antioxidant activity were analyzed. The autoclaving process drastically reduced the peak color intensities of water-soluble paprika and beet red (BR) by ~90%. Turmeric oleoresin (TO), water-soluble β-carotene, and grape skin color were also unstable and showed a remaining color intensity of 45-60%. The colors of all the synthetic pigments tested were stable under this process. The scavenging activities of BR and paprika against ABTS, DPPH, and AAPH radicals decreased significantly, whereas those of TO were enhanced after the autoclaving treatment. The results suggest that the chemical and bioactive properties of certain dietary pigments are affected by the autoclaving process, and this phenomenon should be considered during food processing.

Effect of graphite oxide on photodegradation behavior of poly(vinyl alcohol)/graphite oxide composite hydrogels

  • Moon, Young-E;Yun, Ju-Mi;Kim, Hyung-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.138-142
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA) composites with various graphite oxide (GO) contents (0 to 10 wt%) were prepared by sonicating the mixture of PVA and GO, followed by crosslinking with glutaraldehyde. GO was pre-treated with oxyfluorination ($O_2:F_2$ = 8:2) in order to modify the surface of GO to allow it to carry hydrophilic functional groups. PVA/GO composite hydrogels were characterized by scanning electron microscopy and Fourier-transform infrared spectrometer (FT-IR). The morphology of the PVA/GO composite hydrogels and the variations in soluble gel portion were investigated under various GO contents and UV irradiation doses. The variation in the chemical structure of photo degraded PVA/GO composite hydrogels was studied by FT-IR. The photochemical stability of PVA/GO composite hydrogels under UV irradiation was found to improve noticeably with increasing content of uniformly dispersed GO.

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Biological Characterization of the Omp1-like Protein from Actinobacillus actinomycetemcomitans

  • Ha, Jung-Hye;Jeong, Mi-Suk;Jo, Wol-Soon;Jeong, Min-Ho;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.275-280
    • /
    • 2010
  • Actinobacillus actinomycetemcomitans is a gram-negative, nonmotile coccobacillus bacterium that is associated with several human diseases, including endocarditis, meningitis, osteomyelitis, subcutaneous abscesses and periodontal diseases. A full-length Omp1-like protein gene from A. actinomycetemcomitans was cloned into a pQE30 vector and overexpressed in Escherichia coli BL21(DE3) cells. The protein revealed sequence homologies to Seventeen kilodalton proteins (Skp) from Pasteurella multocida and E. coli that have been characterized as periplasmic chaperones. This soluble Omp1-like protein was successfully purified to homogeneity for further folding and functional studies. The purity, identity, and conformation of the protein were determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization mass spectrometry, circular dichroism, fluorescence spectroscopic, and differential scanning calorimetric studies. We showed that the protein formed an oligomer larger than a tetramer. We found, further, that it is comprised of mostly $\alpha$-helices and boasts high thermal stability.

Synthesis of a novel non-conjugated Blue emitting material Copolymer and Fabrication of mono color OLED by doping various Fluorescent Dyes

  • Cho Jae Young;Oh Hwan Sool;Yoon Seok Beom;Kang Myung Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.675-679
    • /
    • 2004
  • The existing conjugated blue emitting material polymer which has been used for the two-wavelength method white-emission has good stability and low operating voltage as merits, but the imbalanced carrier transport has been indicated as problem area. We have introduced a novel blue emitting material having perylene moiety unit with hole transporting ability and blue emitting property and triazine moiety unit with electron transporting ability into the same host chain. We have synthesized N-[p-(perylen-3-y1)pheny1]methacry1 amide (PPMA) monomer and [N-(2,4-dipheny1-1,3,5-triazine)pheny1 methacry1 amide] (DTPM) monomer having blue light-emitting unit and electron transport unit, respectively by three steps. A novel non-conjugated blue emitting material Poly[N -[p­(perylene-3-y1) pheny1] methacry1 amide-co-N-[P-(4,6-dipheny1-1,3,5-triazine-2-y1]pheny1]methacry1 amide] (PPPMA-co-DTPM) copolymer having electron transporting unit was synthesized by the solution polymerization of PPMA and DTPM monomers with an AIBN initiator and showed high yield of $75{\%}$. It was very soluble in common organic solvents, and the fabrication of the thin film using a spin coating method was very simple. The PPPMA exhibited a good thermal stability.

  • PDF