DOI QR코드

DOI QR Code

Effect of graphite oxide on photodegradation behavior of poly(vinyl alcohol)/graphite oxide composite hydrogels

  • Moon, Young-E (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Yun, Ju-Mi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Received : 2011.04.20
  • Accepted : 2011.05.23
  • Published : 2011.09.30

Abstract

Poly(vinyl alcohol) (PVA) composites with various graphite oxide (GO) contents (0 to 10 wt%) were prepared by sonicating the mixture of PVA and GO, followed by crosslinking with glutaraldehyde. GO was pre-treated with oxyfluorination ($O_2:F_2$ = 8:2) in order to modify the surface of GO to allow it to carry hydrophilic functional groups. PVA/GO composite hydrogels were characterized by scanning electron microscopy and Fourier-transform infrared spectrometer (FT-IR). The morphology of the PVA/GO composite hydrogels and the variations in soluble gel portion were investigated under various GO contents and UV irradiation doses. The variation in the chemical structure of photo degraded PVA/GO composite hydrogels was studied by FT-IR. The photochemical stability of PVA/GO composite hydrogels under UV irradiation was found to improve noticeably with increasing content of uniformly dispersed GO.

Keywords

References

  1. Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos, 25, 630 (2004). http://dx.doi.org/10.1002/pc.20058.
  2. Endruweit A, Johnson MS, Long AC. Curing of composite components by ultraviolet radiation: a review. Polym Compos, 27, 119 (2006). http://dx.doi.org/10.1002/pc.20166.
  3. Kacperski M. Polymer nanocomposites. Part I. General characteristics, fillers and nanocomposites based on termosetting polymers. Polimery/Polymers, 47, 801 (2002).
  4. Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci, 28, 1539 (2003). http://dx.doi.org/10.1016/j.progpolymsci. 2003.08.002.
  5. Pawlak A, Morawiec J, Piorkowska E, Galeski A. Nanocomposites of polypropylene and polyethylene with montmorillonite type clays. Polimery/Polymers, 49, 240 (2004).
  6. Kelar K, Jurkowski B, Mencel K. Montmorillonite separated from bentonite--ITS modification and possibility to USE in anionic polymerization of ${\varepsilon}-caprolactam$ for preparation of nanocomposites. Polimery/Polymers, 50, 449 (2005).
  7. Golebiewski J, Rozanski A, Galeski A. Study on the process of preparation of polypropylene nanocomposite with montmorillonite. Polimery/Polymers, 51, 374 (2006).
  8. Uhl FM, Wilkie CA. Polystyrene/graphite nanocomposites: effect on thermal stability. Polym Degradation Stab, 76, 111 (2002). http://dx.doi.org/10.1016/s0141-3910(02)00003-4.
  9. Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater, 13, 4649 (2001). http://dx.doi.org/10.1021/cm010451y.
  10. Morlat-Therias S, Mailhot B, Gardette JL, Da Silva C, Haidar B, Vidal A. Photooxidation of ethylene-propylene-diene/montmorillonite nanocomposites. Polym Degradation Stab, 90, 78 (2005). http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.040.
  11. La Mantia FP, Dintcheva NT, Malatesta V, Pagani F. Improvement of photo-stability of LLDPE-based nanocomposites. Polym Degradation Stab, 91, 3208 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2006.07.014.
  12. Sionkowska A, Skopinska J, Wisniewski M. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym Degradation Stab, 83, 117 (2004). http://dx.doi.org/10.1016/s0141-3910(03)00232-5.
  13. Hassan C, Peppas N. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers . PVA Hydrogels, Anionic Polymerisation Nanocomposites Advances in Polymer Science, Vol. 153, Springer Berlin, Heidelberg, 37 (2000). http://dx.doi.org/10.1007/3-540-46414-x_2.
  14. Park YS, Huh M, Kang SJ, Lee SH, An KH. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method. Carbon Lett, 12, 102 (2011). http://dx.doi.org/10.5714/CL.2011.12.2.102.
  15. Kwiecinska B, Petersen HI. Graphite, semi-graphite, natural coke, and natural char classification--ICCP system. Int J Coal Geol, 57, 99 (2004). http://dx.doi.org/10.1016/j.coal.2003.09.003.
  16. Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater, 18, 2740 (2006). http://dx.doi.org/10.1021/cm060258+.
  17. Hua L, Kai W, Inoue Y. Synthesis and characterization of poly(□-caprolactone)-graphite oxide composites. J Appl Polym Sci, 106, 1880 (2007). http://dx.doi.org/10.1002/app.26503.
  18. Uhl FM, Wilkie CA. Preparation of nanocomposites from styrene and modified graphite oxides. Polym Degradation Stab, 84, 215 (2004). http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.014.
  19. Wang WP, Pan CY. Preparation and characterization of poly(methyl methacrylate)-intercalated graphite oxide/poly(methyl methacrylate) nanocomposite. Polym Eng Sci, 44, 2335 (2004). http://dx.doi.org/10.1002/pen.20261.
  20. Wan YZ, Wang YL, Wen TY. Effect of specific surface area and silver content on bacterial adsorption onto ACF(Ag). Carbon, 37, 351 (1999). http://dx.doi.org/10.1016/s0008-6223(99)90001-5.
  21. Dutta K, De SK. Electrical conductivity and optical properties of polyaniline intercalated graphite oxide nanocomposites. J Nanosci Nanotechnol, 7, 2459 (2007). http://dx.doi.org/10.1166/jnn. 2007.429.

Cited by

  1. Aligned Nanocomposite Membranes Containing Sulfonated Graphene Oxide with Superior Ionic Conductivity for Direct Methanol Fuel Cell Application vol.54, pp.28, 2015, https://doi.org/10.1021/acs.iecr.5b01450
  2. Accelerated weathering of wood–polypropylene composite containing carbon fillers vol.50, pp.10, 2016, https://doi.org/10.1177/0021998315591842