DOI QR코드

DOI QR Code

Equilibrium, kinetic and thermodynamic studies of the adsorption of acidic dye onto bagasse fly ash

  • Shouman, Mona A. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre) ;
  • Fathy, Nady A. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre) ;
  • El-Khouly, Sahar M. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre) ;
  • Attia, Amina A. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre)
  • Received : 2011.05.18
  • Accepted : 2011.08.29
  • Published : 2011.09.30

Abstract

Bagasse fly ash (BFA) is one of the important wastes generated in the sugar industry; it has been studied as a prospective low-cost adsorbent in the removal of congo red (CR) from aqueous solutions. Chemical treatment with $H_2O_2$ was applied in order to modify the adsorbability of the raw BFA. Batch studies were performed to evaluate the influence of various experimental parameters such as dye solution pH, contact time, adsorbent dose, and temperature. Both the adsorbents were characterized by Fourier-transform infrared spectrometer, energy-dispersive X-ray spectrophotometer and nitrogen adsorption at 77 K. Equilibrium isotherms for the adsorption of CR were analyzed by Langmuir, Freundlich and Temkin models using non-linear regression technique. Intraparticle diffusion seems to control the CR removal process. The obtained experimental data can be well described by Langmuir and also followed second order kinetic models. The calculated thermodynamic parameters indicate the feasibility of the adsorption process for the studied adsorbents. The results indicate that BFA can be efficiently used for the treatment of waste water containing dyes.

Keywords

References

  1. Gregory AR, Elliot J, Kluge P. Ames testing of Direct Black 38 parallels carcinogenicity testing. J Appl Toxicol, 1, 308 (1981). http://dx.doi.org/10.1002/jat.2550010608.
  2. McKay G, Otterburn MS, Aga JA. Fuller's earth and fired clay as adsorbents for dyestuffs. Equilibrium and rate studies. Water Air Soil Pollut, 24, 307 (1985). http://dx.doi.org/10.1007/BF00161790.
  3. Gong R, Li M, Yang C, Sun Y, Chen J. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J Hazard Mater, 121, 247 (2005). http://dx.doi.org/10.1016/j.jhazmat.2005.01.029.
  4. McKay G, Allen SJ, McConvey IF, Otterburn MS. Transport processes in the sorption of colored ions by peat particles. J Colloid Interface Sci, 80, 323 (1981). http://dx.doi.org/10.1016/0021-9797(81)90192-2.
  5. Seshadri S, Bishop PL, Agha AM. Anaerobic/aerobic treatment of selected Azo dyes in wastewater. Waste Manage (Oxford), 14, 127 (1994). http://dx.doi.org/10.1016/0956-053x(94)90005-1.
  6. Janos P, Buchtova H, Ryznarova M. Sorption of dyes from aqueous solutions onto fly ash. Water Res, 37, 4938 (2003). http://dx.doi.org/10.1016/j.watres.2003.08.011.
  7. Panswad T, Wongchaisuwan S. Mechanisms of dye wastewater colour removal by magnesium carbonate-hydrated basic. Water Sci Technol, 18, 139 (1986).
  8. Malik PK, Saha SK. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep Purif Technol, 31, 241 (2003). http://dx.doi.org/10.1016/s1383-5866(02)00200-9.
  9. Koch M, Yediler A, Lienert D, Insel G, Kettrup A. Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere, 46, 109 (2002). http://dx.doi.org/10.1016/s0045-6535(01)00102-3.
  10. Ciardelli G, Corsi L, Marcucci M. Membrane separation for wastewater reuse in the textile industry. Resour Conservat Recycl, 31, 189 (2001). http://dx.doi.org/10.1016/s0921-3449(00)00079-3.
  11. Mall ID, Srivastava VC, Agarwal NK, Mishra IM. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere, 61, 492 (2005). http://dx.doi.org/10.1016/j.chemosphere.2005.03.065.
  12. Capar G, Yetis U, Yilmaz L. The most effective pre-treatment to nanofiltration for the recovery of print dyeing wastewaters. Desalination, 212, 103 (2007). http://dx.doi.org/10.1016/j.desal. 2006.09.020.
  13. Gad HMH, El-Sayed AA. Activated carbon from agricultural byproducts for the removal of Rhodamine-B from aqueous solution. J Hazard Mater, 168, 1070 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.02.155.
  14. Soleimani Dorcheh A, Abbasi MH. Silica aerogel: synthesis, properties and characterization. J Mater Process Technol, 199, 10 (2008). http://dx.doi.org/10.1016/j.jmatprotec.2007.10.060.
  15. Kuprianov VI, Janvijitsakul K, Permchart W. Co-firing of sugar cane bagasse with rice husk in a conical fluidized-bed combustor. Fuel, 85, 434 (2006). http://dx.doi.org/10.1016/j.fuel.2005.08.013.
  16. Fotovat F, Kazemian H, Kazemeini M. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Mater Res Bull, 44, 913 (2009). http://dx.doi.org/10.1016/j.materresbull.2008.08.008.
  17. Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf Physicochem Eng Aspects, 272, 89 (2006). http://dx.doi.org/10.1016/j.colsurfa.2005.07.016.
  18. Gupta VK, Jain CK, Ali I, Sharma M, Saini VK. Removal of cadmium and nickel from wastewater using bagasse fly ash--a sugar industry waste. Water Res, 37, 4038 (2003). http://dx.doi.org/10.1016/s0043-1354(03)00292-6.
  19. Mane VS, Mall ID, Srivastava VC. Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigments, 73, 269 (2007). http://dx.doi.org/10.1016/j.dyepig.2005.12.006.
  20. Moreno-Castilla C, Carrasco-Marin F, Parejo-Perez C, Lopez Ramon MV. Dehydration of methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character. Carbon, 39, 869 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00192-5.
  21. Fu Y, Viraraghavan T. Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res, 7, 239 (2002). http://dx.doi.org/10.1016/s1093-0191(01)00123-x.
  22. Malik DJ, Strelko Jr V, Streat M, Puziy AM. Characterisation of novel modified active carbons and marine algal biomass for the selective adsorption of lead. Water Res, 36, 1527 (2002). http://dx.doi.org/10.1016/s0043-1354(01)00348-7.
  23. Finqueneisel G, Zimny T, Albiniak A, Siemieniewska T, Vogt D, Weber JV. Cheap adsorbent. Part 1: Active cokes from lignites and improvement of their adsorptive properties by mild oxidation. Fuel, 77, 549 (1998). http://dx.doi.org/10.1016/S0016-2361(97)00249-4.
  24. Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B. Conversion of rice husk ash to zeolite beta. Waste Manage (Oxford), 26, 1173 (2006). http://dx.doi.org/10.1016/j.wasman.2005.09.009.
  25. Rodriguez A, Garcia J, Ovejero G, Mestanza M. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics. J Hazard Mater, 172, 1311 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.07.138.
  26. Worathanakul P, Payubnop W, Muangpet A. Characterization for post-treatment effect of bagasse ash for silica extraction. Proc World Acad Sci Eng Tech, 56, 360 (2009).
  27. Singh BK, Nayak PS. Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash. Adsorpt Sci Technol, 22, 295 (2004). http://dx.doi.org/10.1260/0263617041514901.
  28. Mall ID, Srivastava VC, Agarwal NK. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash--kinetic study and equilibrium isotherm analyses. Dyes Pigments, 69, 210 (2006). http://dx.doi.org/10.1016/j.dyepig.2005.03.013.
  29. Banat F, Al-Asheh S, Al-Makhadmeh L. Utilization of raw and activated date pits for the removal of phenol from aqueous solutions. Chem Eng Technol, 27, 80 (2004). http://dx.doi.org/10.1002/ceat.200401868.
  30. Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: a case study of acid yellow 36. Dyes Pigments, 56, 239 (2003). http://dx.doi.org/10.1016/s0143-7208(02)00159-6.
  31. Attia AA, Khedr SA, Elkholy SA. Adsorption of chromium ion (VI) by acid activated carbon. Braz J Chem Eng, 27, 183 (2010). http://dx.doi.org/10.1590/S0104-66322010000100016.
  32. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem, 34, 451 (1999). http://dx.doi.org/10.1016/s0032-9592(98)00112-5.
  33. Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochem Eng J, 7, 79 (2001). http://dx.doi.org/10.1016/s1369-703x(00)00098-x.
  34. Furusawa T, Smith JM. Intraparticle mass transport in slurries by dynamic adsorption studies. AlChE J, 20, 88 (1974). http://dx.doi.org/10.1002/aic.690200111.
  35. Kannan N, Sundaram MM. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons--a comparative study. Dyes Pigments, 51, 25 (2001). http://dx.doi.org/10.1016/s0143-7208(01)00056-0.
  36. Mall ID, Srivastava VC, Agarwal NK, Mishra IM. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf Physicochem Eng Aspects, 264, 17 (2005). http://dx.doi.org/10.1016/j.colsurfa.2005.03.027.
  37. Poots VJP, McKay G, Healy JJ. Removal of basic dye from effluent using wood as an adsorbent. J Water Pollut Control Fed, 50, 926 (1978).
  38. Allen SJ, McKay G, Khader KYH. Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut, 56, 39 (1989). http://dx.doi.org/10.1016/0269-7491(89)90120-6.
  39. Choy KKH, McKay G, Porter JF. Sorption of acid dyes from effluents using activated carbon. Resour Conservat Recycl, 27, 57 (1999). http://dx.doi.org/10.1016/s0921-3449(98)00085-8.
  40. Kim Y, Kim C, Choi I, Rengaraj S, Yi J. Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol, 38, 924 (2004). http://dx.doi.org/10.1021/es0346431.
  41. Gottipati R, Mishra S. Application of biowaste (waste generated in biodiesel plant) as an adsorbent for the removal of hazardous dye--methylene blue--from aqueous phase. Braz J Chem Eng, 27, 357 (2010). http://dx.doi.org/10.1590/S0104-66322010000200014.
  42. Bhattacharyya KG, Sharma A. Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions. J Environ Manage, 71, 217 (2004). http://dx.doi.org/10.1016/j.jenvman.2004.03.002.
  43. Gokulakrishnan N, Pandurangan A, Sinha PK. Removal of decontaminating agent from aqueous solution using microporous and mesoporous materials: activated carbon as an effective adsorbent. Adsorpt Sci Technol, 26, 291 (2008). http://dx.doi.org/10.1260/026361708786934415.
  44. Mittal AK, Venkobachar C. Studies on sorption of dyes by sulfonated coal and Ganoderma lucidum. Indian J Environ Health, 31, 105 (1989).
  45. Gupta VK, Mohan D, Sharma S. Removal of lead from wastewater using bagasse fly ash--a sugar industry waste material. Sep Sci Technol, 33, 1331 (1998). https://doi.org/10.1080/01496399808544986