• Title/Summary/Keyword: congo red removal

Search Result 8, Processing Time 0.023 seconds

Decoloration of Polycyclic Aromatic Dyes by Mushroom Fungi (버섯균에 의한 염료의 탈색)

  • Sancheti, Sandesh;Sancheti, Shruti;Seo, Sung-Yum
    • The Korean Journal of Mycology
    • /
    • v.37 no.1
    • /
    • pp.73-79
    • /
    • 2009
  • As waste-water disposal plants and oxidative biodegradation for the removal of waste polyaromatic dyes are proved to be ineffective due to the chemical stability of dyes, we studied various strains of mushroom fungi for the removal of these dyes. 100 fungi were isolated from the mushroom samples of 230 species collected in Korea. The growth medium containing a dye (Bromophenol Blue, Congo Red, or Methylene Blue) was inoculated to 10% and incubated for 7 days without shaking. The six strains which removed dyes effectively were selected for further studies with respect to removal of polycyclic aromatic dyes. For all strains, the rate of decoloration of dyes was increasing with Methylene Blue, Bromophenol Blue and Congo Red. The rate of decoloration was higher with stationary culture than with shaking culture. Adsorption of the dyes was the highest with Congo Red.

Decolorization of a Sulfonated Azo Dye, Congo Red, by Staphylococcus sp. EY-3

  • PARK, EUN-HEE;JANG, MOON-SUN;CHA, IN-HO;CHOI, YONG-LARK;CHO, YOUNG-SU;KIM, CHEORL-HO;LEE, YOUNG-CHOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.221-225
    • /
    • 2005
  • A Staphylococcus sp. EY-3 with the capability of decolorizing Congo Red was isolated from soil at an effluent treatment plant of a textile and dyeing industry. This strain was able to almost completely decolorize a high concentration of Congo Red in 48 h under aerobic conditions. Optimal color removal (more than 96%) was achieved at 30- 40oC, and no noticeable effects of different pH values (5.5- 8.0) on decolorization were observed. This strain also exhibited a remarkable decolorization capability against azo dyes under aerobic conditions, even at a high concentration (dyes 1 g/l) of dye. The metabolic product of Congo Red degradation by this strain was identified by gas chromatography with mass selective detection (GC/MSD) to be an amine derivative benzidine.

Equilibrium, kinetic and thermodynamic studies of the adsorption of acidic dye onto bagasse fly ash

  • Shouman, Mona A.;Fathy, Nady A.;El-Khouly, Sahar M.;Attia, Amina A.
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.143-151
    • /
    • 2011
  • Bagasse fly ash (BFA) is one of the important wastes generated in the sugar industry; it has been studied as a prospective low-cost adsorbent in the removal of congo red (CR) from aqueous solutions. Chemical treatment with $H_2O_2$ was applied in order to modify the adsorbability of the raw BFA. Batch studies were performed to evaluate the influence of various experimental parameters such as dye solution pH, contact time, adsorbent dose, and temperature. Both the adsorbents were characterized by Fourier-transform infrared spectrometer, energy-dispersive X-ray spectrophotometer and nitrogen adsorption at 77 K. Equilibrium isotherms for the adsorption of CR were analyzed by Langmuir, Freundlich and Temkin models using non-linear regression technique. Intraparticle diffusion seems to control the CR removal process. The obtained experimental data can be well described by Langmuir and also followed second order kinetic models. The calculated thermodynamic parameters indicate the feasibility of the adsorption process for the studied adsorbents. The results indicate that BFA can be efficiently used for the treatment of waste water containing dyes.

Isolation and Characterization of Klebsiella pneumoniae WL-5 Capable of Decolorizing Triphenylmethane and Azo Dyes (트리페닐메탄계와 아조계 색소를 탈색할 수 있는 Klebsiella pneumoniae WL-5의 분리 및 특성)

  • Wu, Jing;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1331-1335
    • /
    • 2008
  • A Klebsiella pneumoniae WL-5 with the capability of decolorizing several recalcitrant dyes was isolated from activated sludge of an effluent treatment plant of a textile and dyeing industry. This strain showed a higher dye decolorization under static condition and color removal was optimal at pH 6-8 and $30-35^{\circ}C$. More than 90% of its color of Congo Red were reduced within 12 hr at $200\;{\mu}M$ dye concentration. Malachite Green, Brilliant Green and Reactive Black-5 lost over 85% of their colors at $10\;{\mu}M$ dye concentration, but the percentage decolorization of Reactive Red-120, Reactive Orange-16, and Crystal Violet were about 46%, 25%, and 13%, respectively. Decolorizations of Congo Red and triphenylmethane dyes, such as Malachite Green, Brilliant Green, and Crystal Violet were mainly due to adsorption to cells, whereas azo dyes, such as Reactive Black-5, Reactive Red-120, and Reactive Orange-16 seemed to be removed by biodegradation through unknown enzymatic processes.

Preparation and Characterization Study of PET Nanofiber-reinforced PEI Membrane, Investigation of the Application of Organic Solvent Nanofiltration Membrane (PET 나노섬유 강화 PEI 막의 제조 및 특성화 연구, 그에 따른 유기용매 나노여과막 가능성 검증)

  • Sung-Bae Hong;Kwangseop Im;Dong-Jun Kwon;Sang Yong Nam
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • In this study, waste polyethylene terephthalate (PET) was recycled to produce a support and then polyetherimide (PEI) was used for environmentally friendly organic solvent nanofiltration. The prepared composite membrane was first prepared by electrospinning a PET support, then casted on the support using PEI having excellent solvent resistance, and organic solvent nanoparticles using a Non-solvent Induced Phase Separation (NIPS) method. A filtration membrane was prepared. First, the fiber diameter and tensile strength of the PET scaffold prepared prior to membrane fabrication were identified through morphology analysis, and the optimal scaffold for the organic solvent nanofiltration membrane was identified. Afterward, the PET/PEI composite membrane prepared was checked for the DEA removal rate of Congo red having a molecular weight of 697 g/mol in ethanol to understand the performance as an organic solvent nanofiltration membrane according to the concentration of PEI. Finally, the removal rate of Congo red was 90% or more.

Elimination of COD and Color of Dye by UV/H2O2, UV/TiO2 System (UV/H2O2, UV/TiO2 시스템에서 염료의 색도 및 COD 제거)

  • Kim, Kei-Woul;Park, Joung Mi;Sim, Su-Jin;Yee, Hi-Joung;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.51-56
    • /
    • 2000
  • The Photocatalytic decolorization and degradation of commercial dyes were studied using a batch reactor. Degussa P25 titanium dioxide and $H_2O_2$ were used as the photocatalyst and proved to be effective for dyes degradation when they were irradiated with UV light. The light source was a 20W low pressure mercury lamp. Three different kinds of dyes, such as direct dye(congo red), acid dye (acid black) and disperse dye(disperse blue) were tested. Extending the UV only treatment up to 120min, direct dye was decolorized to 60% and degraded to 30% as COD. On the other side, acid and disperse dyes were eliminated less than 10% as color and COD. But, color and COD were eliminated about 90% for all of the three dyes by $UV/H_2O_2$ system. And then the most effective decolorization was done for direct dye with 96% removal efficiency by $UV/TiO_2$ system at 120min with 500mg/L of $TiO_2$.

  • PDF

Trametes sp. CJ-105에 의한 염료의 색도제거

  • Kim, Hyun-Soo;Oh, Kwang-Keun;Lee, Cheol-Woo;Lee, Jae-Heung;Jeon, Yeong-Joong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.630-635
    • /
    • 1997
  • Decolorization of congo red, methyl orange, poly R478, remazol brilliant blue R and crystal violet by white-rot fungus Trametes sp. CJ-105, isolated in Korea, was investigated. Remazol blue and methyl orange were almost completely decolorized after 2 days of culture, but congo red, crystal violet and poly R478 were decolorized by about 80%, 40% and 30% after 10 days of culture, respectively. As a result of determination of cell mass and enzyme activity, it was shown that color removal efficiency was related to cell mass and enzyme activity, and also found that only laccase (E.C.1.10.3.2) activity was existed in the culture broth. The decolorization ratios of remazol blue in the concentrations of 100ppm to 3, 000 ppm were 85% and above after 2 days of culture. In this study, we found that white-rot fungus, Trametes sp. CJ-105, was effective in decolorizing a wide range of structurally different synthetic dyes.

  • PDF

Removal of different anionic dyes from aqueous solution by anion exchange membrane

  • Khan, Muhammad Ali;Khan, Muhammad Imran;Zafar, Shagufta
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.259-277
    • /
    • 2017
  • Adsorption is a widely used technique for the removal of dyes from wastewaters by variety of adsorbents. In this work, the main focus is on the potential assessment of anion exchange membrane for the removal of different dyes using batch system and investigation of experimental data by applying various kinetic and thermodynamic models. The removal of anionic dyes i.e., Eosin-B, Eriochrome Black-T and Congo Red by anion exchange membrane BII from aqueous solution was carried out and effect of various parameters such as contact time, membrane dosage, temperature and ionic strength on the percentage removal of anionic dyes was studied. The experimental data was assessed by kinetic models namely pseudo-first-order, pseudo-second-order, Elovich liquid film diffusion, Bangham and the modified Freundlich models equation have been used to analyze the experimental data. These results indicate that the adsorption of these anionic dyes on BII follows pseudo-second-order kinetics with maximum values of regression coefficient (0.992-0.998) for all the systems. The adsorption of dyes was more suitable to be controlled by a liquid film diffusion mechanism. The adsorptive removal of dye Eosin-B and Eriochrome Black-T were decreased with temperature and thermodynamic parameters such as free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$) and entropy (${\Delta}S^o$) for adsorption of dyes on membrane BII were calculated at 298 K, 308 K and 318 K. The values of enthalpy and entropy were negative for EB and EBT representing that the adsorption of these dyes on BII is physiosorptive and exothermic in nature. Whereas the positive values of enthalpy and entropy for CR adsorption on BII, indicating that its adsorption is endothermic and spontaneous in nature. It is evident from this study that anion exchange membrane has shown good potential for the removal of dyes from aqueous solution and it can be used as adsorbent for dues removal on commercial levels.