Solubility and Storage Stability of Astaxanthin

Astaxanthin의 용해특성 및 저장 안정성

  • Kim, So-Young (Department of Food and Biotechnology, Center for Food Function and Safety, and Nanomaterial and Product RIC, Hoseo University) ;
  • Cho, Eun-Ah (Department of Food and Biotechnology, Center for Food Function and Safety, and Nanomaterial and Product RIC, Hoseo University) ;
  • Yoo, Ji-Min (Department of Food and Biotechnology, Center for Food Function and Safety, and Nanomaterial and Product RIC, Hoseo University) ;
  • In, Man-Jin (Department of Human Nutrition and Food Science, Chungwoon University) ;
  • Chae, Hee-Jeong (Department of Food and Biotechnology, Center for Food Function and Safety, and Nanomaterial and Product RIC, Hoseo University)
  • 김소영 (호서대학교 식품생물공학과, 식품기능안전연구센터, 나노소재 및 응용제품 지역혁신센터) ;
  • 조은아 (호서대학교 식품생물공학과, 식품기능안전연구센터, 나노소재 및 응용제품 지역혁신센터) ;
  • 유지민 (호서대학교 식품생물공학과, 식품기능안전연구센터, 나노소재 및 응용제품 지역혁신센터) ;
  • 인만진 (청운대학교 식품영양학과) ;
  • 채희정 (호서대학교 식품생물공학과, 식품기능안전연구센터, 나노소재 및 응용제품 지역혁신센터)
  • Published : 2008.12.31

Abstract

Basic characteristics of astaxanthin including solubility and stability were investigated. Astaxanthin showed a very poor solubility in water, but it was highly soluble in organic solvents such as acetone and acetic acid. The solubility of astaxanthin in acidic condition was 10-20 times higher than those in neutral and basic conditions. Astaxanthin was very unstable in acidic condition under UV irradiation and in the presence of oxygen. Also, heating even for a very short time accelerated the degradation of astaxanthin. In conclusion, it is required to enhance the water-solubility and stability of astaxanthin for industrial application in food and cosmetic area.

본 연구에서는 아스타잔틴의 각종 유기용매와 물에 대한 용해도와 산화, 빛, 온도 및 pH에 의한 아스타잔틴의 안정성을 검토하였다. 아스타잔틴은 유기용매인 아세톤과 아세트산에 비교적 용해도가 높았으며 물에는 거의 용해되지 않았다. 아스타잔틴의 용해도에 미치는 pH의 영향을 검토한 결과, 산성 조건 (pH 2)에서는 중성이나 염기성 조건에 비하여 용해도가 10-20배 증가하였다. 아스타잔틴은 산화와 빛에 대한 안정성이 매우 낮았으며, pH 3에서도 안정성이 급격히 떨어지는 것으로 조사되었다. 온도에 대한 영향을 조사한 결과, 상온 보관시에도 아스타잔틴이 쉽게 분해되었으며, 특히 $100^{\circ}C$에서 5초 동안 가열할 경우 아스타잔틴이 90% 이상 분해되었다. 결론적으로 아스타잔틴을 식품이나 화장품 등의 산업적 활용을 위해서는 안정성과 용해도 개선이 요구되는 것으로 판단되었다.

Keywords

References

  1. Shimidzu, N., M. Goto, and W. Miki (1996), Carotenoids as singlet oxygen quenchers in marine organisms, Fish. Sci. 62, 134-137 https://doi.org/10.2331/suisan.62.134
  2. Bendich, A. (1991), Non vitamin a activity of carotenoids:immuno enhancement, Food Sci. Technol. Res. 2, 127-130 https://doi.org/10.1016/0924-2244(91)90648-3
  3. Chew, B. P., J. S. Park, M. W. Wong, and T. S. Wong (1999), A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo, Anticancer Res. 19, 1849-1854
  4. Jyonouchi, H., S. Sun, K. Iijima, and M. Gross (2000), Antitumor activity of astaxanthin and its mode of action, Nutr. Cancer 36, 59-65 https://doi.org/10.1207/S15327914NC3601_9
  5. Snodderly, D. M. (1995), Evidence for portection against age-related macular degeneration by carotenoids andantioxidant vitamins, Am. J. Clin. Nutr. 62, 1448-1461 https://doi.org/10.1093/ajcn/62.6.1448S
  6. Park, E. K., M. W. Seo, and C. G. Lee (2001), Effect of medium compositions for the growth and the astaxanthin production of Haematococcus pluvialis, Kor. J. Appl. Microbiol. Biotechnol. 29, 227-233
  7. Johnson, E. A. and W. A. Schroeder (1995), Microbial carotenoids production, Adv. Biochem. Eng. 53, 119-178
  8. Schroeder, W. A. and E. A. Johnson (1993) Antioxidant role of carotenoids in Phaffia rhodozyma, J. Gen. Microbiol. 39, 907-912
  9. Sedmak, J. J., D. K. Weerasinghe, and S. O. Jolly (1990), Extraction and quantitation of astaxanthin from Phaffia rhodozyma, Biotechnol. Technol. 4, 107-112 https://doi.org/10.1007/BF00163282
  10. Lorenz R. T. and G. R. Cysewski (2000), Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Tibtech 18, 160-167 https://doi.org/10.1016/S0167-7799(00)01433-5
  11. Grung, M. and S. L. Jensen (1991), Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3S)-astaxanthin esters, J. Appl. Phycol. 4, 165-171 https://doi.org/10.1007/BF02442465
  12. Chen, X., R. Chen, Z. Guo, C. Li, and P. Li (2007), The preparation and stability of the inclusion complex of astaxanthin with ${\beta}$-cyclodextrin, Food Chem. 101, 1-5 https://doi.org/10.1016/j.foodchem.2005.12.053
  13. Yuan C, Z. Jin, X. Xu, H. Zhuang, and W. Shen (2008), Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-cyclodextrin, Food Chem. 109, 264-268 https://doi.org/10.1016/j.foodchem.2007.07.051
  14. Lee, C. K. (2003), Process development for astaxanthin production by microalgae, Ministry of Maritime Affairs & Ficheries, Korea
  15. Higuera-Ciapara, I., L. Felix-Valenzuela, F. M. Goycoolea, and W. Arguelles-Monal (2004), Microencapsulation of astaxanthin in a chitosan matrix, Carbohydr. Polymers 56, 41-45 https://doi.org/10.1016/j.carbpol.2003.11.012
  16. Kittikaiwan, P, S. Powthongsook, P. Pavasant, and A. Shotipruk (2007), Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement, Carbohydr. Polymers 13, 1-8 https://doi.org/10.1016/0144-8617(90)90047-V
  17. Jeon, M. N. (1999), Improved aqueous solubility and chemical stabilities of an inclusion complex, SCIC derived from shikonin and ${\beta}$-cyclodextrin, M. S. Thesis, Dept. of Food technology, Chung Ang University, Seoul
  18. Kim, Y. B. (2000) Solubilization and extraction of high performance antioxidant astaxanthin from Phaffia rhodozyma, M. S. Thesis, Dept. of Food technology, Han Yang University, Seoul