• Title/Summary/Keyword: solid-phase extraction (SPE)

Search Result 200, Processing Time 0.033 seconds

Analysis of the Volatile Organic Compounds of Persimmon Flower according to Tree Age and Floral Organ (감나무 수령과 감꽃 기관에 따른 휘발성 향기성분 분석)

  • Kim, Ji Hye;Hong, Sae Jin;Shin, Il Sheob;Eum, Hyang Lan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • This study was conducted to investigate volatile organic compounds (VOCs) of persimmon (Diospyros kaki Thunb) flower. VOCs of persimmon flower was collected via SPE (solid phase micro extraction) and determined by GC-MS according to tree age and organs such as flower and calyx. The ratio of early bloom was higher in more than 15 year old tree than other trees showing tree age was related with flowering rate. Major VOCs of persimmon flower was a-pinene, butane, caryophyllene, cubebene, lavandulol, D-limoneneylangene, ylangene, mainly included green, fruit, and floral flavors. The number of VOCs in persimmon flower was 30 compounds in 5-9 years old tree, 24 compounds in 10-14 years old tree, and 32 compounds in more than 15 years old tree. In comparison with VOCs in organs of sweet persimmon 'Fuyu' cultivar, flower has 10 compounds of VOCs and 26.35% of relative peak area, while calyx has 14 compounds and 46.28%, respectively. In astringent persimmon, flower has 6 compounds of VOCs and 17.58% of relative peak area, while calyx has 9 compounds and 50.27%, showing calyx of both cultivars has various volatile compounds. This study will contribute to provide a basic data for the fragrance industry to use the flavor of persimmon flower.

Application of Freezing Filtration Method to the Analysis of Alkylphenols, Chlorophenols and Bisphenol a in Korean Aquatic Biological Samples Using GC/MS-SIM (GC/MS-SIM을 이용한 우리나라 수중 생물시료 중 알킬페놀, 클로로페놀과 비스페놀 A의 분석을 위한 냉동필터법의 응용)

  • Kim, Hyub;Jang, Cheol-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.689-698
    • /
    • 2007
  • A new technique was proposed for the determination of alkylphenols, chlorophenols and bisphenol A in korean aquatic biological samples. The alkylphenols, chlorophenols and bisphenol A in korean aquatic biological samples were extracted with acetonitrile and then acetonitrile layer was refrigerated at $-60^{\circ}C$ for 2 hours(freezing filtration method). Also, solid-phase extraction(SPE) was used to XAD-4 and subsequent conversion to isobutoxycarbonyl(isoBOC) or tert-butyldimethylsilyl(TBDMS) derivatives for sensitive analysis with gas chromatography/mass spectrometry-selected ion monitoring(GC/MS-SIM) mode. For isoBOC derivatization and TBDMS derivatization the recoveries were $70.1\sim150.6%$ and $93.8\sim108.3%$, the method detection limit(MDLs) of bisphenol A for SIM were $0.062{\mu}g/kg$ and $0.010{\mu}g/kg$, and the SIM respectively. When these methods were applied to korean aquatic biological samples, the concentrations of the 11 phenolic EDCs were $0.675\sim1.970{\mu}g/kg$.

Application and Validation of an Optimal Analytical Method using QuEChERS for the determination of Tolpyralate in Agricultural Products (QuEChERS법을 활용한 농산물 중 제초제 Tolpyralate의 최적 분석법 선발 및 검증)

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kim, Ji-Young;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • BACKGROUND: Pesticides are broadly used to control weeds and pests, and the residues remaining in crops are managed in accordance with the MRLs (maximum residue limits). Therefore, an analytical method is required to quantify the residues, and we conducted a series of analyses to select and validate the quick and simple analytical method for tolpyralate in five agricultural products using QuEChERS (quick, easy, cheap, effective, rugged and safe) method and LC-MS/MS (liquid chromatography-tandem mass spectrometry). METHODS AND RESULTS: The agricultural samples were extracted with acetonitrile followed by addition of anhydrous magnesium sulfate, sodium chloride, disodium hydrogencitrate sesquihydrate and trisodium citrate dihydrate. After shaking and centrifugation, purification was performed with d-SPE (dispersive-solid phase extraction) sorbents. To validate the optimized method, its selectivity, linearity, LOD (limit of detection), LOQ (limit of quantitation), accuracy, repeatability, and reproducibility from the inter-laboratory analyses were considered. LOQ of the analytical method was 0.01 mg/kg at five agricultural products and the linearity of matrix-matched calibration were good at seven concentration levels, from 0.0025 to 0.25 mg/L (R2≥0.9980). Mean recoveries at three spiking levels (n=5) were in the range of 85.2~112.4% with associated relative standard deviation values less than 6.2%, and the coefficient of variation between the two laboratories was also below 13%. All optimized results were validated according to the criteria ranges requested in the Codex Alimentarius Commission (CAC) and Ministry of Food and Drug Safety (MFDS) guidelines. CONCLUSION: In conclusion, we suggest that the selected and validated method could serve as a basic data for detecting tolpyralate residue in imported and domestic agricultural products.

Comparison of isoButoxycarbonyl derivatives, tert.-butyldimethylsilyl derivatives, with US EPA Method in the sensitivity of Alkylphenols, Chlorophenols, and Bisphenol A Potential field-screening applications of GC/MS-SIM (기체 크로마토그래피/질량분석기를 이용한 field-screening 적용을 위한 알킬페놀류, 클로로페놀류 및 비스페놀 A의 isoBOC 유도체, TBDMS 유도체와 US EPA 방법의 비교)

  • Kim, Hyub;Hong, Jong-Ki;Kim, Yong-Hwa;Kim, Kyoung-Rae
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.196-213
    • /
    • 2002
  • The alkylphenols, chlorophenols and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring mode followed by three work-up methods for comparison; EPA method, isoBOC derivatization method and TBDMS derivatization method. Eleven phenols in water samples were extracted with dichloromethane. Also, solid-phase extraction (SPE) with XAD-4 and subsequent conversion to isobutoxycarbonyl derivatives or tert.-butyldimethylsilyl derivatives for sensitive analysis with the selected ion-monitoring (SIM) mode. The recoveries were 85.1~109.9% (EPA method) and 90.3~126.6% (isoBOC derivatization and TBDMS derivatization), respectively. The method detection limit of bisphenol A for SIM were 0.732 ${\mu}g/{\ell}$ (EPA method), 0.002 ${\mu}g/{\ell}$ (isoBOC derivatization) and 0.021 ${\mu}g/{\ell}$ (TBDMS derivatization). The SIM responses were linear with the correlation coefficient varying 0.9755~0.9981 (isoBOC derivatization), and 0.9908~0.9996 (TBDMS derivatization). When these methods were applied to treated wastewater sample from a polyethylene plant, the concentrations of 11 phenols were below the method detection limit.

Determination of Neonicotinoid Pesticides in Commercial Agricultural Products by LC-MS/MS (LC-MS/MS를 이용한 농산물중 Neonicotinoid 계 농약분석)

  • Hwang, Lae-hong;Yang, Hye-ran;Lee, Jae-kyoo;Kim, Chang-kyu;Kim, Min-jung
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.312-318
    • /
    • 2020
  • A method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for neonicotinoid pesticide analysis in agricultural products. Four compounds (imidacloprid, clothianidin, acetamiprid, thiacloprid) were extracted with acetonitrile from agricultural products and cleaned up by NH2 solid-phase extraction procedure, and eluted with 0.1% formic acid in methanol/dichloromethane (5/95, v/v). The limit of detection and quantification were 0.0001-0.0005 mg/kg and 0.001 mg/kg, respectively. The mean recoveries of neonicotinoid pesticide from agricultural products were in the range of 90.7-100.9% and 94.4-99.8%, as spiked at 0.2 mg/kg and 0.02 mg/kg, respectively. This validation satisfied the national criteria for pesticide analytical methods. In summary, The present method is fast, precise and sensitive enough for the Positive List System (PLS), and we conclude that the method is also suitable for neonicotinoid pesticide determination in a wide range of agricultural products.

Development of Rapid and Simple Drug Identification and Semi Quantitative Analytical Program by Gas Chromatography-Mass Spectrometry (가스크로마토그래피/질량분석기를 이용한 약물의 확인 및 간이 정량분석 프로그램 개발)

  • Kim, Eun-Mi;Han, Eun-Young;Hong, Hyo-Jeong;Jeong, Su-Jin;Choe, Sang-Gil;Rhee, Jong-Sook;Jung, Jin-Mi;Yeom, Hye-Sun;Lee, Han-Sun;Lee, Sang-Ki
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.106-115
    • /
    • 2011
  • Systematic toxicological analysis (STA) means the process for general unknown screening of drugs and toxic compounds in biological fluids. In order to establish STA, in previous study we investigated pattern of drugs & poisons in autopsy cases during 2007~2009 in Korea, and finally selected 62 drugs as target drugs for STA. In this study, rapid and simple drug identification and quantitative analytical program by gas chromatography-mass spectrometry(GC-MS) was developed. The in-house program, "DrugMan", consisted of modified chemstation data analysis menu and newly developed macro modules. Total 55 drugs among 62 target drugs were applied to this program, they were 14 antidepressants, 8 anti-histamines, 5 sedatives/hypnotics, 5 narcotic analgesics, 3 antipsychotic drugs, and etc. For calibration curves, fifty five drugs were divided into four groups of range considering their therapeutic or toxic concentrations in blood specimen, i.e. 0.05~1 mg/l, 0.1~1 mg/l, 0.1~5 mg/l or 0.5~10 mg/l. Standards spiked bloods were extracted by solid-phase extraction (SPE) with trimipramine-D3 as internal standard. Parameters such as retention times, 3 mass fragment ions, and calibration curves for each drug were registered to DrugMan. A series of identification, semi quantitation of target drugs and reporting the results were performed automatically. Calibration curves for most drugs were linear with correlation coefficients exceeding 0.98. Sensitivity rate of DrugMan was 0.90 (90%) for 55 drugs at the level of 0.5 mg/l. For standard spiked bloods at the level of 0.5 mg/l for 29 drugs, semi quantitative concentrations were ranged 0.36~0.64 mg/l by DrugMan. If more drugs are registered to database in DrugMan in further study, it will be useful tools for STA in forensic toxicology.

Development and validation of analytical methods for pyrifluquinazon residues determination on agricultural commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 pyrifluquinazon 잔류시험법 개발 및 검증)

  • Do, Jung-Ah;Kwon, Ji-Eun;Kim, Mi-Ra;Lee, Eun-Mi;Kuk, Ju-Hee;Cho, Yoon-Jae;Chang, Moon-Ik;Kwon, Kisung;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.174-181
    • /
    • 2013
  • Pyrifluquinazon is classified with a quinazoline insecticide that regulates food intake by controling the feeding behavior acting on the endocrine or nervous system of pests such as aphids and white fly. To keep safety on pyrifluquinazon residues in agricultural commodities a simple, accurate and rapid analytical method was developed and validated using high performance liquid chromatograph (HPLC-UVD). The pyrifluquinazon residues acidified with 1% formic acid in samples were extracted with acetonitrile and partitioned with hexane subsequently to dichloromethane then purified with silica solid phase extraction (SPE) cartridge. The purified samples were detected using HPLC-UVD. The method was validated using apple and pear spiked with pyrifluquinazon at 0.02, 0.05 and 0.1 mg/kg and hulled rice, pepper, soybean at 0.05 and 0.1 mg/kg. Average recoveries were 70.5~107.9% with relative standard deviation less than 10%. The result of recoveries and overall coefficient of variation of a laboratory results in Gwangju regional FDA and Daejeon regional FDA was followed with Codex guideline (CODEX CAC/GL 40). This method is appropriated at pyrifluquinazon residues determination and will be used as official method of analysis.

Monitoring of Neonicotinoid Pesticide Residues in Paprika Using UPLC-MS/MS from Gyeongnam Region (UPLC-MS/MS를 이용한 경남지역 파프리카 중 neonicotinoid계 농약 잔류 모니터링)

  • Kim, Nam-Kuk;Lee, Seung-Hwa;Nam, Yu-Jeong;Moon, Kyung-Mi;Park, Min-Ho;Yun, Mun-Hee;Kim, Mi-Young;Jang, Hyun-Min;Shin, Bong-Shig
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Monitoring or follow-up surveying pesticide residues in agricultural commodities is the key to meet the international regulations and to enhance international competitiveness of Korean agricultural commodities. Six neonicotinoid insecticides, acctamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam were monitored in 95 paprika samples collected from Gyeongnam area. Thc pesticide residues were extracted by EN 15662 buffer based on the QuEChERS method, clean-upped with dispersive solid-phase extraction method to remove interfering pigments, and analyzed using UPLC-MS/MS. The neonicotinoid pesticides were detected in 90.5% of the paprika samples. Two or more pesticides were detected in 82.3% of samples. Although detection frequencies were high, all samples complied with the maximum residue limits (MRLs) set by both the Korea Food and Drug Administration (KFDA) and Japanese Ministry of Health, Labour and Welfare.

Determination of Carbendazim in Commercial Agricultural Products by LC-MS/MS (LC-MS/MS를 이용한 농산물 중 카벤다짐 분석)

  • Hwang, Lae-Hwong;Lee, Sung-Deuk;Kim, Jeong-Gon;Kim, Ji-Young;Park, So-Hyun;Kim, Ji-Hae;Park, Jung-Hyun;Han, Chang-Ho;Kim, Mu-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.141-146
    • /
    • 2017
  • A rapid and precise method using LC-MS/MS was developed for carbendazim analysis in agricultural products. This compound was extracted with acetonitrile from agricultural products and cleaned up by solid-phase extraction procedure. The limit of detection and quantification were 0.001 mg/kg and 0.004 mg/kg, respectively. The mean recoveries and precision from 4 agricultural products, soybean sprout and mungbean sprout were in the range of 83.3-86.4% and 0.2-3.0% spiked at 1.0 mg/kg and those were in the range of 77.3-90.1% and 1.3-3.8% spiked at 0.02 mg/kg. The present method is faster and more precise compared with the multi-residue method of Korean Food Code. Therefore, we conclude that this method is suitable for carbendazim determination in a wide range of agricultural products.

Residue and risk assessment of veterinary antibiotics in manure-based composts and agricultural soils (가축분뇨 유래 퇴비 및 농경지 중 축산용 항생제의 잔류 및 위해성 평가)

  • Paik, Min-Kyoung;Ryu, Song-Hee;Kim, Sung-Chul;Hong, Young-Kyu;Kim, Jin-Wook;Kim, Jeong-Gyu;Kwon, Oh-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.177-184
    • /
    • 2021
  • While veterinary antibiotics are used only in a part of the dose administered, the rest are excreted as urine or feces. Residual antibiotics enter the adjacent agricultural environments by spraying manure-based composts on farmlands and lead to secondary pollution. Therefore, it is necessary to develop the technique for post management such as regulatory levels of antibiotics in the agricultural environments. This study was conducted to compare by different matrices the amount of residual antibiotics such as tetracyclines and sulfonamides, which are known to be frequently used in Korea and to practice risk assessment by different antibiotics in soils before and after application of composts. Pre-treatment with modified typical method using buffer and solid phase extraction showed the recovery of composts and soils was more than 70% at ppb level and the limits of detection were 0.13-0.46 and 0.05-0.25 ㎍/kg, respectively. Analysis of manure-based composts revealed concentrations from 5.38 to 196.0 ㎍/kg for tetracyclines, from below the detection of limit (BDL) to 259.0 ㎍/kg for sulfonamides. In case of agricultural soils, residual concentrations of selected veterinary antibiotics were ranged 0.30-53.3 ㎍/kg, BDL-4.16 ㎍/kg respectively and the concentration level of tetracyclines, which had higher soil distribution coefficient (Kd) values, was higher than that of sulfonamides. There was a difference in human risk assessment by different antibiotics in soil before and after application of composts. But, it was indicated that detection values of all of 5 antibiotics were very safe on the basis that Hazard Quotient was safe below 1.