DOI QR코드

DOI QR Code

Residue and risk assessment of veterinary antibiotics in manure-based composts and agricultural soils

가축분뇨 유래 퇴비 및 농경지 중 축산용 항생제의 잔류 및 위해성 평가

  • Paik, Min-Kyoung (Program Planning, Research Policy Bureau, RDA) ;
  • Ryu, Song-Hee (Chemical Safety Division, NIAS, RDA) ;
  • Kim, Sung-Chul (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Hong, Young-Kyu (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Kim, Jin-Wook (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Kim, Jeong-Gyu (OJeong Resilience Institute, Korea University) ;
  • Kwon, Oh-Kyung (OJeong Resilience Institute, Korea University)
  • Received : 2021.05.05
  • Accepted : 2021.06.09
  • Published : 2021.06.30

Abstract

While veterinary antibiotics are used only in a part of the dose administered, the rest are excreted as urine or feces. Residual antibiotics enter the adjacent agricultural environments by spraying manure-based composts on farmlands and lead to secondary pollution. Therefore, it is necessary to develop the technique for post management such as regulatory levels of antibiotics in the agricultural environments. This study was conducted to compare by different matrices the amount of residual antibiotics such as tetracyclines and sulfonamides, which are known to be frequently used in Korea and to practice risk assessment by different antibiotics in soils before and after application of composts. Pre-treatment with modified typical method using buffer and solid phase extraction showed the recovery of composts and soils was more than 70% at ppb level and the limits of detection were 0.13-0.46 and 0.05-0.25 ㎍/kg, respectively. Analysis of manure-based composts revealed concentrations from 5.38 to 196.0 ㎍/kg for tetracyclines, from below the detection of limit (BDL) to 259.0 ㎍/kg for sulfonamides. In case of agricultural soils, residual concentrations of selected veterinary antibiotics were ranged 0.30-53.3 ㎍/kg, BDL-4.16 ㎍/kg respectively and the concentration level of tetracyclines, which had higher soil distribution coefficient (Kd) values, was higher than that of sulfonamides. There was a difference in human risk assessment by different antibiotics in soil before and after application of composts. But, it was indicated that detection values of all of 5 antibiotics were very safe on the basis that Hazard Quotient was safe below 1.

축산용 항생제는 투여된 양의 일부만이 체내에서 사용되며 나머지는 분뇨로 배출되며 이를 활용한 퇴비를 농경지에 살포함으로써 농업환경에 유입되어 2차 오염 등을 초래하고 있다. 따라서, 농업환경 중 항생제 관리기준 설정 등 사후 관리 기술이 필요하다. 본 연구는 국내 사용빈도가 높은 것으로 알려진 tetracycline 및 sulfonamide 계열 등의 항생제를 대상으로 매체별 잔류량을 비교하고 퇴비 시용 전·후 농경지 토양 중 잔류항생제의 위해성을 평가하기 위하여 수행되었다. Buffer 및 SPE를 사용한 전처리 방법은 ppb 수준에서 70% 이상의 회수율을 나타냈으며, 검출한계(LOD)의 범위는 퇴비와 토양에서 각각 0.13-0.46 ㎍/kg과 0.05-0.25 ㎍/kg이었다. 잔류 항생제 분석결과 퇴비 중 tetracycline 계열 항생제의 잔류 농도는 5.38-196.0 ㎍/kg, sulfonamide 계열은 below the detection of limit (BDL)-259.0 ㎍/kg 수준으로 검출되었다. 농경지 토양의 경우 각각 0.30-53.3 ㎍/kg, BDL-4.16 ㎍/kg의 잔류 수준을 나타냈으며 토양분배계수(Kd) 값이 높은 tetracycline 계열 항생제의 잔류 농도가 sulfonamide 계열보다 높았다. 퇴비 시용 전후의 농경지 토양의 항생제에 대한 인체위해도는 항생제 종류에 따른 차이가 있었으나, 전체 HQ가 1 이하에서 안전하다는 기준에 의하면 조사된 항생제 5종 모두 인체 위해성이 매우 낮았으며 시용 전·후의 영향이 전체 위해도에 미치는 비율을 고려하면, 퇴비시용이 토양의 항생제에 대한 인체위해성에 미치는 영향은 미비한 것으로 판단되었다.

Keywords

Acknowledgement

이 연구는 농촌진흥청 국립농업과학원의 가축분뇨 유래 퇴·액비 중 항생제 잔류특성 및 경감기술 개발 (PJ01488504)의 연구비 지원에 의해 이루어졌습니다.

References

  1. Pikkemaat MG, Yassin H, van der Fels-Klerx HJ, Berendsen BJA (2016) Antibiotic Residues and Resistance in the Environment. RIKILT Wageningen UR (University & Research) RIKILT report (No. 2016. 009): 32
  2. Chen J, Xu H, Sun Y, Huang L, Zhang P, Zou C, Bo Y, Zhu YG, Zhao C (2016) Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci Total Environ 543: 197-205. doi: 10.1016/j.scitotenv.2015.11.015
  3. Wang S, Wang H (2015) Adsorption behavior of antibiotic in soil environment: a critical review. Front Environ Sci Eng 9: 565-574 https://doi.org/10.1007/s11783-015-0801-2
  4. Ministry of Agriculture, Food and Rural Affairs (2020) Press release: Consumption of veterinary antibiotics in Korea. Sejong
  5. Martinez-Carballo E, Conzalez-Barreiro C, Scharf Sigrid, Gans Oliver (2007) Envrionmental monitoring sutdy of selected veterinary antibiotics in animal manure and solids in Austria. Envrionmental Pollution 148(2): 570-579. doi: 10.1016/j.envpol.2006.11.035
  6. Halling-Sorensen B, Sengelov G, Tjornelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmently relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol. 42:263-271. doi: 10.1007/s00244-001-0017-2
  7. Yu H, Ding W, Luo J, Geng R, Cai Z (2012) Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research 124: 170-177. 10.1016/j.still.2012.06.011
  8. Liu E, Yan C, Mei X, He W, Bing SH, Ding L, Liu Q, Liu S, Fan T (2010) Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest china. Geoderma 158(3-4): 173-180. doi: 10.1016/j.geoderma.2010.04.029
  9. Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use. Land Development Department Bangkok Thailand, Bangkok
  10. Kim HR, Park SB, Kim SC (2017) Monitoring of antibiotics in the soil and sediment near at the animal feeding operation and waste water treatment plant. Korean J Soil Sci Fert 50(4):285-292. doi: 10.7745/KJSSF.2017.50.4.285
  11. Schwab BW, Hayes EP, Fiori JM, Mastrocco FJ, Roden NM, Dragin D, Meyerhoff RD, D'Aco VJ, Anderson PD (2005) Human phamaceuticals in US suface waters; A human health risk assessment. Regul Toxicol Pharmacol 42: 296-312. doi: 10.1016/j.yrtph.2005.05.005
  12. Ye ZL, Deng Y, Lou Y, Ye X, Zhang J, Chen S (2017) Adsorption behavior of tetracyclines by struvite particles in the process of phosphorus recovery from synthetic swine wastewater. Chem Eng J 313: 1633-1638. doi: 10.1016/j.cej.2016.11.062
  13. Li Y, Wang H, Liu X, Zhao G, Sun Y (2016) Dissipation kinetics of oxytetracycline, tetracycline, and chlortetracycline residues in soil. Environ Sci Pollut Res 13822-13831. doi: 10.1007/s11356-016-6513-8
  14. Zhao F, Chen L, Yang L, Li S, Sun L, Yu X (2018) Distribution, dynamics and determinants of antibiotics in soils in a peri-urban area of Yangtze River Delta, Eastern China. Chemosphere 211: 261-270. doi: 10.1016/j.chemosphere.2018.07.162
  15. Kim JR, Kan E (2016) Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. J Environ Manag 180: 94-101. 10.1016/j.jenvman.2016.05.016
  16. Wegst-Uhrich SR, Navarro DA, Zimmerman L, Aga DS (2014) Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. Chem Cent J 8:5. doi: 10.1186/1752-153X-8-5
  17. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. http://www.who.int/drugresistance on 19-05-2014. Accessed 19 Sep 2014
  18. Aust MO, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P, Thiele-Bruhn S (2008) Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after sub-therapeutic use in cattle. Environ Pollut 156:1243-1251. doi: 10.1016/j.envpol.2008.03.011
  19. Zhou D, Chen B, Wu M, Liang N, Zhang D, Li H, Pan B (2014) Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions. Sci Total Environ 497-498: 665-670. doi: 10.1016/j.scitotenv.2014.07.130
  20. Gu C, Karthikeyan KG, Silbley SD, Pederson JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemospere 66: 1494-1501. doi: 10.1016/j.chemosphere.2006.08.028
  21. Sukul P, Spiteller M (2006) Sulfonamides in the environment as veterinary drugs. Rev Environ Contam Toxicol 187: 67-101
  22. Boxall ABA, Kolpin DW, Halling-Sorense B, Tolls J (2003) Are veterinary medicines causing environmental resks? Environ Sci Technol 37: 286A-294A. doi: 10.1021/es032519b
  23. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: A review. Environ Sci Technol 35(17): 3397-3406. doi: 10.1021/es0003021
  24. Winckler C, Engels H, Hund-Rinke K, Luckow T, Simon M, Steffens G (2003) Verhalten von Tetacycline und anderen Veterinarantibiotika in Wirtschaftsdunger und Boden. UFOPLAN 200 73 248, Berlin