• Title/Summary/Keyword: solid density

Search Result 1,204, Processing Time 0.029 seconds

Low-temperature Sintering and Microwave Dielectric Properties of the B2O3 and CuO-added Ba(Mg1/3Nb2/3)O3 Ceramics (B2O3와 CuO가 첨가된 Ba(Mg1/3Nb2/3)O3 세라믹스의 저온소결과 마이크로파 유전특성 연구)

  • Lim, Jong-Bong;Son, Jin-Ok;Nahm, Sahn;Yoo, Myong-Jea;Lee, Woo-Sung;Kang, Nam-Kee;Lee, Hwack-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • B$_2$O$_3$ added Ba(Mg$_{1}$3/Nb$_{2}$3/)O$_3$ (BBMN) ceramics were not sintered below 900 $^{\circ}C$. However, when CuO was added to the BBMN ceramic, it was sintered even at 850 $^{\circ}C$. The amount of the $Ba_2$B$_2$O$_{5}$ second phase decreased with the addition of CuO. Therefore, the CuO additive is considered to react with the B$_2$O$_3$ inhibiting the reaction between B$_2$O$_3$ and BaO. Moreover, it is suggested that the solid solution of CuO and B$_2$O$_3$ might be responsible for the decrease of the sintering temperature of the specimens. A dense microstructure without pores was developed with the addition of a small amount of CuO. However, a porous microstructure with large pores was formed when a large amount of CuO was added. The bulk density, the dielectric constant ($\varepsilon$$_{r}$) and the Q-value increased with the addition of CuO but they decreased when a large amount of CuO was added. The variations of those properties are closely related to the variation of the microstructure. The excellent microwave dielectric properties of Qxf = 21500 GHz, $\varepsilon$$_{r}$ = 31 and temperature coefficient of resonance frequency($\tau$$_{f}$) = 21.3 ppm/$^{\circ}C$ were obtained for the Ba(Mg$_{1}$3/Nb$_{2}$3/)O$_3$+2.0 mol%B$_2$O$_3$+10.0 mol%CuO ceramic sintered at 875 $^{\circ}C$ for 2 h.h.2 h.h.

Recovery of Caustic Soda in Textile Mercerization by Combined Membrane Filtration (복합 막분리 공정에 의한 섬유가공 공정에서의 가성소다 회수)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Cho, Jin-Ku;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1273-1280
    • /
    • 2008
  • This study sought to establish the optimum operating condition for the recovery of caustic (NaOH) solution from mercerization in textile process. As main factors, the silt density index (SDI) evaluation of ceramic membrane for the application of nanofiltration/reverse osmosis (NF/RO) membrane, the recovery yield measurement of caustic solution for the application of polymeric membrane, the optimum condition of chemical cleaning for the membrane regeneration, the optimum removal condition of total organic carbon (TOC), turbidity, color, and the permeate flux of ceramic membrane/polymeric membrane combined process were investigated. As results, ceramic ultrafiltration (UF) in the first step and nanofiltration (NF) in the second step were found to be suitable for the removal of total suspended solid (TSS), residual organics, turbidity including color, and the recovery of caustic solution from caustic wastewater stream in mercerization process. When only the ceramic UF membrane was used, the rejection efficiency of both of TSS and turbidity was more than 99.0%, and the color and TOC were rejected about 74.7% and 49.2%, respectively. Meanwhile, the combined membrane precess of UF and NF membranes showed even more efficient removal abilities and thus more than 99.9% of TSS and turbidity, 87.7% of color, and 78.2% of TOC were removed. In particular, 91.3% of NaOH was successfully recovered with 83.7% of total volume in the combined membrane process. With this regard, a clean caustic solution was obtained in a high purity, which can be reused for mercerization process, expecting to offer economical benefits.

A Study on the Consciousness Survey for Visitors and Physical Properties of Refuse in Summer Resort - Focused on Beach and Valley in Gangwon province - (피서지 쓰레기의 물리적 특성 및 피서객 의식조사 연구 - 강원도 해수욕장.산간계곡 중심으로 -)

  • Park, Kwang-Ha;Kwak, Dong-Kurl;Kwon, Young-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • In order to making resources for the organic wastes, it is very important to understand for the life cycle of wastes before the physicochemical analysis and engineering technology. Therefore we try to fine the solution through the interdisciplinary consilience between natural science and social science for the management of refuge in summer resort. Summer visitors of beach answered that fly tipping of refuse was 65.56% and insufficient separation was 17.78% about the survey. But insufficient separation was 42.5% and fly tipping was 37.5% in valley. The survey for the effective methods at reducing refuse was represented that campaign and teaching was 47.78%, fine was 23.33% and using the standard bags was 18.89% in beach. Campaign and teaching was 37.5%, using the standard bags was 37.5% and fine was 15% in valley. Bulk density of refuse in gyeongpo beach was measured in $74kg/m^{3}$. This value was three times as much low than municipal solid wastes. Moreover, the composition of refuses in beach showed that combustible materials was 81.1% and incombustible materials was 18.9%. Moisture, ash and combustibles were analyzed 19.0%, 9.2% and 91.8% respectively.

Experimental Studies on the Compressive Strength of the Frozen Soils (동결토의 압축강도에 관한 실험적 연구)

  • 유능환;최중돈;유영선;조영택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.55-66
    • /
    • 1993
  • Upon freezing a soil swells due to phase change and its compression stress increase a lot. As the soil undergo thawing, however, it becomes a soft soil layer because the 'soil changes from a solid state to a plastic state. These changes are largely dependent on freezing temperature and repeated freezing-thawing cycle as well as the density of the soil and applied loading condition. This study was initiated to describe the effect of the freezing temperature and repeated freezing-thawing cycle on the unconfined compressive strength. Soil samples were collected at about 20 sites where soil structures were installed in Kangwon provincial area and necessary laboratory tests were conducted. The results could be used to help manage effectively the field structures and can be used as a basic data for designing and constructing new projects in the future. The results were as follows ; 1. Unconfined compressive strength decreased as the number of freezing and thawing cycle went up. But the strength increased as compression speed, water content and temperature decreased. The largest effect on the strength was observed at the first freezing and thawing cycle. 2. Compression strain went up with the increase of deformation speed, and was largely influenced by the number of the freezing-thawing cycle. 3. Secant modulus was responded sensitivefy to the material of the loading plates, increased with decrease of temperature down to - -10$^{\circ}$C, but was nearly constant below the temperature. Thixotropic ratio characteristic became large as compression strain got smaller and was significantly larger in the controlled soil than in the soil treated with freezing and thawing processes 4. Vertical compression strength of ice crystal(development direction) was 3 to 4 times larger than that of perpendicular to the crystal. The vertical compression strength was agreed well with Clausius-Clapeyrons equation when temperature were between 0 to 5C$^{\circ}$, but the strength below - 5$^{\circ}$C were different from the equation and showed a strong dependency on temperature and deformation speed. When the skew was less then 20 degrees, the vertical compression strength was gradually decreased but when the skew was higher than that, the strength became nearly constant. Almost all samples showed ductile failure. As considered above, strength reduction of the soil due to cyclic freezing-thawing prosses must be considered when trenching and cutting the soil to construct soil structures if the soil is likely subject to the processes. Especially, if a soil no freezing-thawing history, cares for the strength reduction must be given before any design or construction works begin. It is suggested that special design and construction techniques for the strength reduction be developed.

  • PDF

Analysis of Water Retention Capacity at Sasa borealis Stands in Jirisan National Park (지리산국립공원 내 조릿대 임분의 수원함양기능 분석)

  • Ji, Hyung Woo;Park, Jae Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 2008
  • Although landslides were frequently occurred under Tripterygium regelii and Rubus sp. vegetations, the damage of landslide was not observed in sasa (Sasa borealis) stands. These phenomena may be affected by forest vegetation types. This result suggested that the landslide occurred in Jirisan (Mt.) National Park may be closely related to water retention capacity at Sasa borealis stands. This study compared and analyzed the water retention capacity of each soil horizon of sasa, larch (Larix leptolepis) and mongolian oak (Quercus mongorica) stands. Soil bulk density in A horizon was lower in sasa (0.776g/$cm^3$) than in mongolian oak (0.828g/$cm^3$) and in larch stands (1.282g/$cm^3$). Water permeability in A horizon was 0.02055cm/sec for sasa, 0.00575cm/sec for mongolian oak, and 0.0007cm/sec for larch stands, respectively. The water permeability of sasa stand was about 3.6 times and about 29 times higher than in mongolian oak and in larch stands, respectively. This result indicates that water infiltration of soil surface during a rain event is more rapid in sasa than in other two stands. Soil organic matter content in B horizon was lower in larch (0.7%) than in mongolian oak (6.5%) and in Sasa (3.3%) stands. The solid ratio in A horizon was highest in larch among three stands, but that of mongolian oak and larch stands showed a similar rate. Pore space rates was 70.7% for A horizon and 70.6% for B horizon of sasa, 68.9% for A horizon and 70.6% for B horizon of sasa, 68.9% for A horizon and 70.6% for B horizon of mongolian oak forests and 51.7% for A horizon and 49.2% for B horizon of larch forests, respectively. According to pore space rates, the water retention capacity may be poor in larch stand compared with other two stands. Soil strength in sasa and mongolian stands was over 25kgf/$cm^2$ from 40cm depth, while the strength was over 25kgf/$cm^2$ from 25cm depth in larch stand. The result indicates that tree growth and water permeability in larch stand could be limited due to high soil strength. Larch stand was poor for soil pore space development to be offered to the water retention capacity, but water retention capacity of A horizon soil in sasa stand was high than that of other two stands. Therefore, establishment of sasa stand under larch stand could help to prevent landslides.

Potassium Leaching from Grassland Soil (초지토양에서의 칼리 용탈)

  • Sangdeog A. Kim;Shigekata Yoshida;Ryosei Kayama
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.3
    • /
    • pp.168-173
    • /
    • 1989
  • In this report two experiments were carried out. Vertical distribution of exchangeable potassium(K) of soil in the orchardgrass meadow was investigated‘ a and K leaching from soil was monitored under lysimeter condition throughout one year. The results obtained a are as follows; The difference in the exchangeable soil K content b between the soil layers was very small in K-zero plot of the orchard grass meadow, but it was significant in K¬h high plot (Experiment 1). T The volume of leached water from the Iysime ter was a about 471 liters/m2 during a year and the amount of leached water was influenced by the precipitation. D During the investigation the quantity of leached K was 2 22.3 g/$m^2$. About 40 % of the total K in a year leached out during the first two months, May and June, after the start of the experiment. On the other hand, leached K amounted to 13.2 g/$m^2$ (60 % of the total K leached) during the period of ten months from July, 1985 to A April, 1986, when forages were harvested from the soil o of the lysimeter (Experiment 2). From the above results, it was known that K leach¬i ing from grassland soil can be also occurred in consider¬a able amount when the growth stage of forage is not d developed or soil does not become solid on such a p period as immediately after grassland improvement or e establishment. However, unless the K leaching from soil s seems to be little under the condition of permanent g grassland ecosystem with higher grade of soil hardness a and possibly with compact density of forage plants.

  • PDF

Fabrication of Nano $Y_{2}O_{3}-CeO_{2}$ Sintered Body Using Dispersion Stability (분산 안정성을 이용한 나노 $Y_{2}O_{3}-CeO_{2}$ 소결체의 제조)

  • Kim, Eun-Jung;Lee, Sang-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.853-859
    • /
    • 2001
  • The dispersion stability of nano $Y_2O_3-CeO_2$ system was investigated using colloid surface chemistry. Green body of $Y_2O_3$ doped $CeO_2$ was prepared by slip casting in and aqueous system. The dispersion stability of suspension between powders and organic additive was accomplished through electrokinetic behavior of suspension, which was done by ESA apparatus. The dynamic mobility of particles was enhanced when the anionic dispersant of the amount of 1wt% was added. The dissolution of $Y^{3+}$ ion in suspension occurred in the acidic region so that pH value in slurries did not move to below 7.0. In the $CeO_2-Y_2O_3$ system, optimal preparation of suspension was made after adding the anionic dispersant as the amount of 1wt% and pH value of 11.0, and then slip-cast and sintered at 1400$^{\circ}$C, 2 hrs. It appeared relative density of >98% and homogeneous distribution of Y element in depth direction as well as in the microstructure of surface.

  • PDF

The Characteristics of Thermophilic Fungi in Relation to Growth-Promoting Effect on the Mycelium of Pleurotus ostreatus (Pleurotus ostreatus 균사의 생장 촉진 효과를 나타내는 고온성 곰팡이의 특징)

  • Lee, Ho-Yong;Shin, Chang-Yup;Kim, Jun-Ho;Kim, Won-Rok;Lee, Young-Keun;Chang, Hwa-Hyoung;Song, In-Geun;Hyun, Soung-Hee;Min, Bong-Hee
    • The Korean Journal of Mycology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • The mycelial growth of Pleurotus ostreatus in compost is strongly stimulated by solid-state fermentation with thermophilic fungi which were isolated from oyster mushroom compost. The biochemical characteristics of these thermophilic fungi were investigated. Cellulase and ligninase activities were not detected by clear zone effect on CMC and lignin media. All of thermophilic fungi grew well with high mycelial density on xylan media and the growing rate of Sepedonium sp. S-2 observed very high. In results of MUF-test, extracellular enzyme activity of Sepedonium sp. S-2, and S-5 measured very high. On the compost after high temperature fermentation with Sepedonium sp. S-2 and S-5, the mycelial growing rate of Pleurotus ostreatus was increased about 50% and it also showed the inhibiting effect on mycelial growth of Trichoderma sp. SJG-51. Isolated thermophilic fungi, Sepedonium sp. S-2 and S-5 were expected as very useful organism for making oyster mushroom compost.

  • PDF

Electrodeposition of some Alpha-Emitting Nuclides and its Isotope Determination by Alpha Spectrometry (몇가지 알파입자 방출 핵종의 전해석출 및 알파 스펙트럼 측정에 의한 그의 동위원소 정량)

  • Key-Suck Jung;In-Suck Suh
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.279-286
    • /
    • 1983
  • An apparatus was made for the electrodeposition of alpha emitting actinide nuclides, $^{207}Bi$ and $^{210}Po$. The electrodeposition was made on a polished stainless steel plate cathode. The anode was made of platinum wire and to stir the solution. With the ammonium chloride as electrolyte initial pH = 4, chloride concentration = 0.6M and solution volume = 15ml, a current of 1.5 ampere(current density = 0.59A/$cm^2$) was flowed for 100 minutes for the quantitative recovery of electrodeposition and on average recovery of 98.3% was obtained within ${\pm}$0.7% uncertainty. Alpha spectrometry of the electrodeposited sample showed alpha peaks from $^{210}Po, ^{234}U$ and $^{239}Pu$ having energy resolution (FWHM) of 18.3, 21.8 and 36.0 keV respectively. The electrodeposition and alpha spectrometry for a natural uranium sample of domestic origin gave $^{238}U : ^{234}U = 1 : 6.1{\times}10^{-5}$ and for a neutron-irradiated uranium sample did $^{238}U : ^{239}Pu : ^{241}Am = 100 : 0.0263 : 5.20{times}10^{-5}$. The result of $^{238}U$ determination in the irradiated sample by electrodeposition-alpha spectrometry was in accord within ${\pm}1.6%$ of relative error with the results of solid fluorimetry and mass spectrometry. For $^{239}Pu$ the result of electrodeposition-alpha spectrometry was in accord within ${\pm}$4.0% of relative error with the results of anion exchange separation and the thenoyltrifluoroacetone(TTA) extraction both followed by alpha spectrometries.

  • PDF

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.